Home
Class 12
MATHS
If x epsilon(7pi,8pi), then "tan"^(-1)sq...

If `x epsilon(7pi,8pi)`, then `"tan"^(-1)sqrt((1-"cos" x)/(1+"cos" x))=`

A

`-x/2`

B

`x/2`

C

`4pi-x/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}} \) for \( x \in (7\pi, 8\pi) \). ### Step-by-Step Solution: 1. **Identify the Range for \( x \)**: Given \( x \in (7\pi, 8\pi) \), we can find the range for \( \frac{x}{2} \): \[ \frac{7\pi}{2} < \frac{x}{2} < \frac{8\pi}{2} \implies \frac{7\pi}{2} < \frac{x}{2} < 4\pi \] This gives us \( \frac{x}{2} \in \left(\frac{7\pi}{2}, 4\pi\right) \). **Hint**: Divide the range of \( x \) by 2 to find the corresponding range for \( \frac{x}{2} \). 2. **Use Trigonometric Identities**: We can simplify the expression \( \sqrt{\frac{1 - \cos x}{1 + \cos x}} \) using the half-angle identities: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \quad \text{and} \quad 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Substituting these into the expression gives: \[ \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \sqrt{\frac{2 \sin^2\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)}} = \sqrt{\tan^2\left(\frac{x}{2}\right)} = |\tan\left(\frac{x}{2}\right)| \] **Hint**: Use half-angle identities to simplify trigonometric expressions. 3. **Determine the Sign of \( \tan\left(\frac{x}{2}\right) \)**: Since \( \frac{x}{2} \) lies in the range \( \left(\frac{7\pi}{2}, 4\pi\right) \), we can determine the quadrant: - \( \frac{7\pi}{2} = 3.5\pi \) is in the third quadrant. - \( 4\pi \) is at the boundary of the fourth quadrant. Therefore, \( \frac{x}{2} \) is in the fourth quadrant where \( \tan\left(\frac{x}{2}\right) < 0 \). **Hint**: Determine the quadrant based on the angle to find the sign of the tangent function. 4. **Evaluate the Inverse Tangent**: Since \( \tan\left(\frac{x}{2}\right) < 0 \), we have: \[ \sqrt{\frac{1 - \cos x}{1 + \cos x}} = -\tan\left(\frac{x}{2}\right) \] Thus, we can write: \[ \tan^{-1}\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right) = \tan^{-1}\left(-\tan\left(\frac{x}{2}\right)\right) \] 5. **Use the Property of Inverse Tangent**: Using the property \( \tan^{-1}(-y) = -\tan^{-1}(y) \): \[ \tan^{-1}\left(-\tan\left(\frac{x}{2}\right)\right) = -\tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) = -\frac{x}{2} \] **Hint**: Use properties of inverse functions to simplify the expression. 6. **Final Expression**: Therefore, the final result is: \[ \tan^{-1}\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right) = -\frac{x}{2} \] ### Conclusion: The value of \( \tan^{-1}\sqrt{\frac{1 - \cos x}{1 + \cos x}} \) for \( x \in (7\pi, 8\pi) \) is \( -\frac{x}{2} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)(sqrt((1-cos x)/(1+cos x))), x lt pi

convert in the simplest form: tan^(-1)(sqrt((1-cos x)/(1+cos x))),x

If pi/2

If x in (pi, 2pi) , prove that ((sqrt(1+cosx))+(sqrt(1-cos x)))/((sqrt(1+cos x)) -sqrt(1-cos x)) = cot(pi/4 +x/2)

Express 'tan ^(^^)(-1)((cos x)/(1-sin x)),-pi/2

Differentiate the following functions with respect to x.x^((2)/(3))+7e-(5)/(x)+7tan x (ii) x^(2)*ln x*e^(x)ln tan((pi)/(4)+(x)/(2))( iv )(sin x-x cos x)/(x sin x+cos x)tan(tan^(-1)sqrt((1-cos x)/(1+cos x))),0

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+cos x)/(1-cos x))}0

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+cos x)/(1-cos x))},0

If pi

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. If "cos"^(-1)x> "sin"^(-1)x, then the set of all values of x is

    Text Solution

    |

  2. "sin"^(-1)("sin" 5)>x^2-4x holds if

    Text Solution

    |

  3. If x epsilon(7pi,8pi), then "tan"^(-1)sqrt((1-"cos" x)/(1+"cos" x))=

    Text Solution

    |

  4. If "tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=pi/2, then the value of x is eq...

    Text Solution

    |

  5. "cos"^(-1)("cos"((7pi)/(5)))=

    Text Solution

    |

  6. sin[cot^(-1)(cot\ (17pi)/3)]

    Text Solution

    |

  7. The principal values of cost^(-1)(-sin(7pi)/(6)) is

    Text Solution

    |

  8. The value of underset(x to pi/2)limsqrt(("tan"x-"sin"("tan"^(-1)("tan"...

    Text Solution

    |

  9. Find the value of cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  10. If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) ...

    Text Solution

    |

  11. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  12. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  13. Given that "sin"^(-1)("sin""(3pi)/(4))=(2pi)/(k),then k=

    Text Solution

    |

  14. If underset(i=1)overset(n)sum cos^(-1) alpha(i)=0," then "underset(i=1...

    Text Solution

    |

  15. Complete solution set of tan^2(sin^(-1)x)>1 is (-1,-1/(sqrt(2)))uu(1/(...

    Text Solution

    |

  16. -(2pi)/(5) is the principal value of

    Text Solution

    |

  17. Find the value of sin [ arc cos (- 1/2)]

    Text Solution

    |

  18. The positive integral solution of "tan"^(-1)x+"cos"^(-1)(y)/(sqrt(1+...

    Text Solution

    |

  19. If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5), th...

    Text Solution

    |

  20. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |