Home
Class 12
MATHS
If "tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=p...

If `"tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=pi/2`, then the value of x is equal to

A

`sqrt3`

B

`(-1)/(sqrt3)`

C

`(1)/(sqrt3)`

D

`-sqrt31`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(-x) + \cos^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan^{-1}(-x) + \cos^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{2} \] ### Step 2: Find \( \cos^{-1}\left(-\frac{1}{2}\right) \) From trigonometric values, we know that: \[ \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \] Thus, we can replace \( \cos^{-1}\left(-\frac{1}{2}\right) \) with \( \frac{2\pi}{3} \): \[ \tan^{-1}(-x) + \frac{2\pi}{3} = \frac{\pi}{2} \] ### Step 3: Isolate \( \tan^{-1}(-x) \) Now, we isolate \( \tan^{-1}(-x) \): \[ \tan^{-1}(-x) = \frac{\pi}{2} - \frac{2\pi}{3} \] To simplify the right side, we need a common denominator: \[ \frac{\pi}{2} = \frac{3\pi}{6}, \quad \frac{2\pi}{3} = \frac{4\pi}{6} \] Thus, \[ \tan^{-1}(-x) = \frac{3\pi}{6} - \frac{4\pi}{6} = -\frac{\pi}{6} \] ### Step 4: Use the property of inverse tangent We know that: \[ \tan^{-1}(-x) = -\tan^{-1}(x) \] So we can rewrite the equation: \[ -\tan^{-1}(x) = -\frac{\pi}{6} \] This simplifies to: \[ \tan^{-1}(x) = \frac{\pi}{6} \] ### Step 5: Solve for \( x \) Taking the tangent of both sides: \[ x = \tan\left(\frac{\pi}{6}\right) \] From trigonometric values, we know: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Thus, the value of \( x \) is: \[ x = \frac{1}{\sqrt{3}} \] ### Final Answer The value of \( x \) is \( \frac{1}{\sqrt{3}} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)((1)/(2))=0 , them one of the values of x is equal to

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

IF tan^-1(1+x)+tan^-1(1-x)=pi/2 , then the value of x is

If tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=(pi)/(4) ,then find the value of x .

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4) then find the value of x

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4), then find the value of x.

If tan^(-1)x+sin^(-1)x=-(2 pi)/(3) then the value of cos^(-1)x+cot^(-1)x is equal to

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. "sin"^(-1)("sin" 5)>x^2-4x holds if

    Text Solution

    |

  2. If x epsilon(7pi,8pi), then "tan"^(-1)sqrt((1-"cos" x)/(1+"cos" x))=

    Text Solution

    |

  3. If "tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=pi/2, then the value of x is eq...

    Text Solution

    |

  4. "cos"^(-1)("cos"((7pi)/(5)))=

    Text Solution

    |

  5. sin[cot^(-1)(cot\ (17pi)/3)]

    Text Solution

    |

  6. The principal values of cost^(-1)(-sin(7pi)/(6)) is

    Text Solution

    |

  7. The value of underset(x to pi/2)limsqrt(("tan"x-"sin"("tan"^(-1)("tan"...

    Text Solution

    |

  8. Find the value of cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  9. If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) ...

    Text Solution

    |

  10. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  11. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  12. Given that "sin"^(-1)("sin""(3pi)/(4))=(2pi)/(k),then k=

    Text Solution

    |

  13. If underset(i=1)overset(n)sum cos^(-1) alpha(i)=0," then "underset(i=1...

    Text Solution

    |

  14. Complete solution set of tan^2(sin^(-1)x)>1 is (-1,-1/(sqrt(2)))uu(1/(...

    Text Solution

    |

  15. -(2pi)/(5) is the principal value of

    Text Solution

    |

  16. Find the value of sin [ arc cos (- 1/2)]

    Text Solution

    |

  17. The positive integral solution of "tan"^(-1)x+"cos"^(-1)(y)/(sqrt(1+...

    Text Solution

    |

  18. If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5), th...

    Text Solution

    |

  19. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  20. sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(tan^(-1)(1)/(2))+tan^(-1)2)=

    Text Solution

    |