Home
Class 12
MATHS
Given that "sin"^(-1)("sin""(3pi)/(4))=(...

Given that `"sin"^(-1)("sin""(3pi)/(4))=(2pi)/(k)`,then k=

A

3

B

8

C

6

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we will follow these steps: ### Step 1: Understand the expression We start with the expression \( \sin^{-1}(\sin(3\pi/4)) \). ### Step 2: Simplify the sine function The sine function has a periodicity of \( 2\pi \). Therefore, we can express \( 3\pi/4 \) in terms of a related angle within the range of \( \sin^{-1} \), which is \( [-\pi/2, \pi/2] \). Since \( 3\pi/4 \) is greater than \( \pi/2 \), we can use the identity: \[ \sin(x) = \sin(\pi - x) \] Thus, we can rewrite: \[ \sin(3\pi/4) = \sin(\pi - 3\pi/4) = \sin(\pi/4) \] ### Step 3: Substitute back into the inverse sine function Now we substitute back into the inverse sine function: \[ \sin^{-1}(\sin(3\pi/4)) = \sin^{-1}(\sin(\pi/4)) \] ### Step 4: Evaluate the inverse sine Since \( \pi/4 \) is within the range of \( [-\pi/2, \pi/2] \), we have: \[ \sin^{-1}(\sin(\pi/4)) = \pi/4 \] ### Step 5: Set up the equation Now we set up the equation given in the problem: \[ \frac{\pi}{4} = \frac{2\pi}{k} \] ### Step 6: Solve for \( k \) To find \( k \), we can cross-multiply: \[ \pi \cdot k = 8\pi \] Dividing both sides by \( \pi \): \[ k = 8 \] ### Final Answer Thus, the value of \( k \) is \( 8 \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

sin((3pi)/(2)-pi/4)

Prove that: "sin"(pi)/(5)"sin"(2pi)/(5)"sin"(3pi)/(5)"sin"(4pi)/(5)=(5)/(16) "sin"36^(@) "sin"72^(@) "sin"108^(@) sin 144^(@)=(5)/(16) .

int_(-1)^(1)(sin^(-1)[x+(3)/(4)])dx=(pi)/(k), then k is where [1] denotes GIF )

Find the value of sin^(-1)("sin"(2pi)/(3))+cos^(-1)("cos"(4pi)/(3))

If K=sin((pi)/(18))sin((5 pi)/(18))sin((7 pi)/(18)), then the numerical value of K is

Prove that (i) "sin " (7pi)/(12) " cos " (pi)/(2) - "cos " *(7pi)/(12) " sin " (pi)/(4) = (sqrt(3))/(2) (ii) " sin " (pi)/(4) " cos " (pi)/(2) + "cos"(pi)/(4) " sin " (pi)/(12) = (sqrt(3))/(2) (iii) " cos " (2pi)/(3) " cos " (pi)/(4) - " sin " (2pi)/(3) " sin " (pi)/(4) =(-(sqrt(3) +1))/(2sqrt(2))

sin(pi)/(4)*sin(3 pi)/(4)*sin(5 pi)/(4)*sin(7 pi)/(4)=

If int_(0)^(K)(cos(x)dx)/(1+sin^(2)(x))=(pi)/(4) then K=

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  2. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  3. Given that "sin"^(-1)("sin""(3pi)/(4))=(2pi)/(k),then k=

    Text Solution

    |

  4. If underset(i=1)overset(n)sum cos^(-1) alpha(i)=0," then "underset(i=1...

    Text Solution

    |

  5. Complete solution set of tan^2(sin^(-1)x)>1 is (-1,-1/(sqrt(2)))uu(1/(...

    Text Solution

    |

  6. -(2pi)/(5) is the principal value of

    Text Solution

    |

  7. Find the value of sin [ arc cos (- 1/2)]

    Text Solution

    |

  8. The positive integral solution of "tan"^(-1)x+"cos"^(-1)(y)/(sqrt(1+...

    Text Solution

    |

  9. If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5), th...

    Text Solution

    |

  10. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  11. sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(tan^(-1)(1)/(2))+tan^(-1)2)=

    Text Solution

    |

  12. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |

  13. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  14. If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5)), then x=

    Text Solution

    |

  15. sin(2sin^(-1) 0.8)=

    Text Solution

    |

  16. The value of cos[2 tan^(-1)(-7)] is

    Text Solution

    |

  17. If 2 sin^(-1)x - cos^(-1)x = pi/2, then x is equal to

    Text Solution

    |

  18. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  19. If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

    Text Solution

    |

  20. Prove that tan^(-1)(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)x/a.

    Text Solution

    |