Home
Class 12
MATHS
If 4 "sin"^(-1)x+"cos"^(-1)x=pi, then x ...

If `4 "sin"^(-1)x+"cos"^(-1)x=pi`, then x is equal to

A

0

B

`1/2`

C

`-1/2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4 \sin^{-1} x + \cos^{-1} x = \pi \), we can follow these steps: ### Step 1: Use the identity for inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Using this identity, we can express \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] ### Step 2: Substitute into the original equation Now, substitute \( \cos^{-1} x \) into the equation: \[ 4 \sin^{-1} x + \left( \frac{\pi}{2} - \sin^{-1} x \right) = \pi \] ### Step 3: Simplify the equation Combine like terms: \[ 4 \sin^{-1} x - \sin^{-1} x + \frac{\pi}{2} = \pi \] This simplifies to: \[ 3 \sin^{-1} x + \frac{\pi}{2} = \pi \] ### Step 4: Isolate \( \sin^{-1} x \) Subtract \( \frac{\pi}{2} \) from both sides: \[ 3 \sin^{-1} x = \pi - \frac{\pi}{2} \] This simplifies to: \[ 3 \sin^{-1} x = \frac{\pi}{2} \] ### Step 5: Solve for \( \sin^{-1} x \) Divide both sides by 3: \[ \sin^{-1} x = \frac{\pi}{6} \] ### Step 6: Find \( x \) Now, take the sine of both sides: \[ x = \sin\left(\frac{\pi}{6}\right) \] ### Step 7: Calculate \( \sin\left(\frac{\pi}{6}\right) \) We know that: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Thus, we find: \[ x = \frac{1}{2} \] ### Final Answer The value of \( x \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If 2 sin^(-1)x - cos^(-1)x = pi/2 , then x is equal to

if 4sin^(-1)x + cos^(-1)x =pi , then: x=…..

sin^(-1) x + cos^(-1) x = pi/4

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  2. If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5)), then x=

    Text Solution

    |

  3. sin(2sin^(-1) 0.8)=

    Text Solution

    |

  4. The value of cos[2 tan^(-1)(-7)] is

    Text Solution

    |

  5. If 2 sin^(-1)x - cos^(-1)x = pi/2, then x is equal to

    Text Solution

    |

  6. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

    Text Solution

    |

  8. Prove that tan^(-1)(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)x/a.

    Text Solution

    |

  9. If 4 "sin"^(-1)x+"cos"^(-1)x=pi, then x is equal to

    Text Solution

    |

  10. If "sin"^(-1)((6x)/(1+9x^2))=2 "tan"^(-1)(ax), then a=

    Text Solution

    |

  11. tan(tan^-1x+tan^-1y+tan^-1z)-cot(cot^-1x+cot^-1y+cot^-1z) is equal to

    Text Solution

    |

  12. The value of tan^(-1)1/3+tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/8 is ……..

    Text Solution

    |

  13. The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

    Text Solution

    |

  14. Prove that: sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi

    Text Solution

    |

  15. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  16. If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b, then:

    Text Solution

    |

  17. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{ta...

    Text Solution

    |

  18. underset(r=1)overset(infty)sum"tan"^(-1)((1)/(1+r+r^2))=….......

    Text Solution

    |

  19. Prove that 2tan^(-1)(sqrt((a-b)/(a+b))tantheta/2)=cos^(-1)((acostheta+...

    Text Solution

    |

  20. If "tan"^(-1)x+"tan"^(-1)"1"/x={(pi//k,if", "xge0),(-pi//k,if", "xlt0)...

    Text Solution

    |