Home
Class 12
MATHS
If "sin"^(-1)((6x)/(1+9x^2))=2 "tan"^(-1...

If `"sin"^(-1)((6x)/(1+9x^2))=2 "tan"^(-1)(ax)`, then a=

A

3

B

8

C

6

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{6x}{1+9x^2}\right) = 2 \tan^{-1}(ax) \), we will follow these steps: ### Step 1: Simplify the Left-Hand Side We can rewrite the left-hand side using the double angle formula for sine. We know that: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] We can express \( \frac{6x}{1 + 9x^2} \) in terms of \( \tan \) to use this identity. ### Step 2: Set \( 3x = \tan(\theta) \) Let \( 3x = \tan(\theta) \). Then, we can express \( \sin(\theta) \) and \( \cos(\theta) \): \[ \sin(\theta) = \frac{3x}{\sqrt{1 + (3x)^2}} = \frac{3x}{\sqrt{1 + 9x^2}} \] \[ \cos(\theta) = \frac{1}{\sqrt{1 + (3x)^2}} = \frac{1}{\sqrt{1 + 9x^2}} \] ### Step 3: Substitute into the Sine Double Angle Formula Using the double angle formula: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2 \left(\frac{3x}{\sqrt{1 + 9x^2}}\right) \left(\frac{1}{\sqrt{1 + 9x^2}}\right) = \frac{6x}{1 + 9x^2} \] Thus, we have: \[ \sin^{-1}\left(\frac{6x}{1 + 9x^2}\right) = 2\theta \] ### Step 4: Relate \( \theta \) to \( \tan^{-1} \) Since we set \( \tan(\theta) = 3x \), we have: \[ \theta = \tan^{-1}(3x) \] Thus: \[ 2\theta = 2\tan^{-1}(3x) \] ### Step 5: Set the Two Sides Equal Now we can equate both sides: \[ 2\tan^{-1}(3x) = 2\tan^{-1}(ax) \] ### Step 6: Divide by 2 Dividing both sides by 2 gives: \[ \tan^{-1}(3x) = \tan^{-1}(ax) \] ### Step 7: Equate the Arguments Since the inverse tangent function is one-to-one, we can equate the arguments: \[ 3x = ax \] ### Step 8: Solve for \( a \) Assuming \( x \neq 0 \), we can divide both sides by \( x \): \[ 3 = a \] ### Conclusion Thus, the value of \( a \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((6x)/(1+16x^(2)))

If cos^(-1)(6x)/(1+9x^(2))=-(pi)/(2)+tan^(-1)3x, then find the value of x.

tan^-1((5x)/(1-6x^2))

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If cos^(-1). (6x)/(1 + 9x^(2)) = - pi/2 + 2 tan^(-1) 3x" , then " x in

If cos^(-1).(6x)/(1 + 9x^(2)) = -(pi)/(2) + 2 tan^(-1) 3x , then find the values of x

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

int(dx)/((1-6x-9x^(2)))

If for x(0,(1)/(4)), the derivative of tan^(-1)((6x sqrt(x))/(1-9x^(3))) is sqrt(x)g(x), then g(x) equals: (1)(3x)/(1-9x^(3))(2)(3)/(1+9x^(3))(3)(9)/(1+9x^(3)) (4) (3x sqrt(x))/(1-9x^(3))

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  2. If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5)), then x=

    Text Solution

    |

  3. sin(2sin^(-1) 0.8)=

    Text Solution

    |

  4. The value of cos[2 tan^(-1)(-7)] is

    Text Solution

    |

  5. If 2 sin^(-1)x - cos^(-1)x = pi/2, then x is equal to

    Text Solution

    |

  6. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

    Text Solution

    |

  8. Prove that tan^(-1)(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)x/a.

    Text Solution

    |

  9. If 4 "sin"^(-1)x+"cos"^(-1)x=pi, then x is equal to

    Text Solution

    |

  10. If "sin"^(-1)((6x)/(1+9x^2))=2 "tan"^(-1)(ax), then a=

    Text Solution

    |

  11. tan(tan^-1x+tan^-1y+tan^-1z)-cot(cot^-1x+cot^-1y+cot^-1z) is equal to

    Text Solution

    |

  12. The value of tan^(-1)1/3+tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/8 is ……..

    Text Solution

    |

  13. The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

    Text Solution

    |

  14. Prove that: sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi

    Text Solution

    |

  15. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  16. If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b, then:

    Text Solution

    |

  17. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{ta...

    Text Solution

    |

  18. underset(r=1)overset(infty)sum"tan"^(-1)((1)/(1+r+r^2))=….......

    Text Solution

    |

  19. Prove that 2tan^(-1)(sqrt((a-b)/(a+b))tantheta/2)=cos^(-1)((acostheta+...

    Text Solution

    |

  20. If "tan"^(-1)x+"tan"^(-1)"1"/x={(pi//k,if", "xge0),(-pi//k,if", "xlt0)...

    Text Solution

    |