Home
Class 12
MATHS
If "tan"^(-1)x+"tan"^(-1)"1"/x={(pi//k,i...

If `"tan"^(-1)x+"tan"^(-1)"1"/x={(pi//k,if", "xge0),(-pi//k,if", "xlt0):}` , then the value of K is

A

3

B

4

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the equation: \[ \tan^{-1} x + \tan^{-1} \frac{1}{x} = \begin{cases} \frac{\pi}{k} & \text{if } x \geq 0 \\ -\frac{\pi}{k} & \text{if } x < 0 \end{cases} \] ### Step 1: Analyze the case when \( x \geq 0 \) For \( x \geq 0 \): - We know that \( \tan^{-1} \frac{1}{x} = \cot^{-1} x \) because \( \tan^{-1} \) and \( \cot^{-1} \) are complementary functions when \( x > 0 \). - Thus, we can write: \[ \tan^{-1} x + \tan^{-1} \frac{1}{x} = \tan^{-1} x + \cot^{-1} x \] ### Step 2: Use the identity for \( \tan^{-1} x + \cot^{-1} x \) From trigonometric identities, we know: \[ \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] So, for \( x \geq 0 \): \[ \tan^{-1} x + \tan^{-1} \frac{1}{x} = \frac{\pi}{2} \] ### Step 3: Analyze the case when \( x < 0 \) For \( x < 0 \): - We cannot directly use \( \cot^{-1} x \) because it is not defined in the same way for negative values. Instead, we can express \( \tan^{-1} \frac{1}{x} \) as: \[ \tan^{-1} \frac{1}{x} = \cot^{-1} x - \pi \] Thus, we have: \[ \tan^{-1} x + \tan^{-1} \frac{1}{x} = \tan^{-1} x + \left(\cot^{-1} x - \pi\right) \] ### Step 4: Use the identity for \( \tan^{-1} x + \cot^{-1} x \) again Using the same identity as before: \[ \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] So, for \( x < 0 \): \[ \tan^{-1} x + \tan^{-1} \frac{1}{x} = \frac{\pi}{2} - \pi = -\frac{\pi}{2} \] ### Step 5: Set up the equations Now we have: \[ \frac{\pi}{2} = \frac{\pi}{k} \quad \text{(for } x \geq 0\text{)} \] \[ -\frac{\pi}{2} = -\frac{\pi}{k} \quad \text{(for } x < 0\text{)} \] ### Step 6: Solve for \( k \) From the first equation: \[ \frac{\pi}{2} = \frac{\pi}{k} \implies k = 2 \] From the second equation: \[ -\frac{\pi}{2} = -\frac{\pi}{k} \implies k = 2 \] ### Conclusion In both cases, we find that \( k = 2 \). Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that tan^(-1) x + tan ^(-1). 1/x = {{:(pi//2", if " x gt 0),(-pi//2", if "x lt 0 ):} .

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

Show that cot^(-1)x={(tan^(-1)(1//x),xgt0),(pi+tan^(-1)(1//x),xlt0):}

If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7) then the value of k is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x) does not exist.

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  2. If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5)), then x=

    Text Solution

    |

  3. sin(2sin^(-1) 0.8)=

    Text Solution

    |

  4. The value of cos[2 tan^(-1)(-7)] is

    Text Solution

    |

  5. If 2 sin^(-1)x - cos^(-1)x = pi/2, then x is equal to

    Text Solution

    |

  6. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

    Text Solution

    |

  8. Prove that tan^(-1)(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)x/a.

    Text Solution

    |

  9. If 4 "sin"^(-1)x+"cos"^(-1)x=pi, then x is equal to

    Text Solution

    |

  10. If "sin"^(-1)((6x)/(1+9x^2))=2 "tan"^(-1)(ax), then a=

    Text Solution

    |

  11. tan(tan^-1x+tan^-1y+tan^-1z)-cot(cot^-1x+cot^-1y+cot^-1z) is equal to

    Text Solution

    |

  12. The value of tan^(-1)1/3+tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/8 is ……..

    Text Solution

    |

  13. The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

    Text Solution

    |

  14. Prove that: sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi

    Text Solution

    |

  15. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  16. If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b, then:

    Text Solution

    |

  17. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{ta...

    Text Solution

    |

  18. underset(r=1)overset(infty)sum"tan"^(-1)((1)/(1+r+r^2))=….......

    Text Solution

    |

  19. Prove that 2tan^(-1)(sqrt((a-b)/(a+b))tantheta/2)=cos^(-1)((acostheta+...

    Text Solution

    |

  20. If "tan"^(-1)x+"tan"^(-1)"1"/x={(pi//k,if", "xge0),(-pi//k,if", "xlt0)...

    Text Solution

    |