Home
Class 12
MATHS
The sum of the infinite series "sin"^(...

The sum of the infinite series
`"sin"^(-1)((1)/(sqrt2))+"sin"^(-1)((sqrt2-1)/(sqrt6))+"sin"^(-1)((sqrt3-sqrt2)/(sqrt12))+…+…+"sin"^(-1)((sqrtn-sqrt((n-1)))/(sqrt(n(n+1))))+…` is

A

`pi/8`

B

`pi/4`

C

`pi/2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \[ \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sin^{-1}\left(\frac{\sqrt{2}-1}{\sqrt{6}}\right) + \sin^{-1}\left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}}\right) + \ldots + \sin^{-1}\left(\frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n(n+1)}}\right) + \ldots \] we will follow these steps: ### Step 1: Identify the General Term The general term of the series can be expressed as: \[ T_n = \sin^{-1}\left(\frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n(n+1)}}\right) \] ### Step 2: Simplify the General Term We can simplify the term inside the sine inverse function: \[ T_n = \sin^{-1}\left(\frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n(n+1)}}\right) \] Using the identity for sine inverse, we can express this as: \[ T_n = \sin^{-1}\left(\frac{1}{\sqrt{n}}\right) - \sin^{-1}\left(\frac{1}{\sqrt{n+1}}\right) \] ### Step 3: Write the Series in Summation Form The series can now be rewritten as: \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \left(\sin^{-1}\left(\frac{1}{\sqrt{n}}\right) - \sin^{-1}\left(\frac{1}{\sqrt{n+1}}\right)\right) \] ### Step 4: Recognize the Telescoping Nature This series is telescoping, meaning that many terms will cancel out: \[ S = \left(\sin^{-1}\left(1\right) - \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)\right) + \left(\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) - \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)\right) + \left(\sin^{-1}\left(\frac{1}{\sqrt{3}}\right) - \sin^{-1}\left(\frac{1}{\sqrt{4}}\right)\right) + \ldots \] ### Step 5: Evaluate the Limit As \( n \to \infty \), \( \sin^{-1}\left(\frac{1}{\sqrt{n+1}}\right) \to 0 \). Therefore, the series simplifies to: \[ S = \sin^{-1}(1) - 0 = \frac{\pi}{2} \] ### Conclusion Thus, the sum of the infinite series is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 1: (CONCEPT BUILDER)|60 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinte series sin^(-1)((1)/(sqrt(2)))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+...sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

sin^(-1)((1)/(sqrt(2)))-3sin^(-1)((sqrt(3))/(2))=

Q.29 Find the sum of the series sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(65)))cdots

sin^(-1)((sqrt(3)+1)/(2sqrt(2)))=

1. sin^(-1) (1/sqrt2) 2. cos^(-1) (sqrt3/2)

1. sin^(-1) (1/sqrt2) 2. cos^(-1) (sqrt3/2)

sin[cos^(-1)(-1/sqrt2)]=?

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^(-1)(2)

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 2: (CONCEPT APPLICATOR)
  1. Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sq...

    Text Solution

    |

  2. The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ...

    Text Solution

    |

  3. The sum of the infinite series "sin"^(-1)((1)/(sqrt2))+"sin"^(-1)((s...

    Text Solution

    |

  4. If cos^(-1)x-"cos"^(-1)y/2=alpha, then 4x^(2)-4xycos alpha+y^(2) is eq...

    Text Solution

    |

  5. 5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x...

    Text Solution

    |

  6. If alpha="sin"^(-1)("cos"("sin"^(-1)x)) and beta="cos"^(-1)("sin"("cos...

    Text Solution

    |

  7. If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are al...

    Text Solution

    |

  8. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then

    Text Solution

    |

  9. Q. the value of tan^-1(a/(b+c))+tan^-1(b/(c+a)), if /=90^@ in triangle...

    Text Solution

    |

  10. If 1/2"sin"^(-1)(2x)/(1+x^2)+1/2"cos"^(-1)(1-y^2)/(1+y^2)+1/3"tan"^(-1...

    Text Solution

    |

  11. If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4)"than ...

    Text Solution

    |

  12. If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="tan"^(-1)((2x-K)/(Ksqrt3)), th...

    Text Solution

    |

  13. If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)...

    Text Solution

    |

  14. Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the g...

    Text Solution

    |

  15. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  16. The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)...

    Text Solution

    |

  17. The minimum integral value of alpha for which the quadratic equation (...

    Text Solution

    |

  18. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  19. Total number of ordered pairs (x, y) satisfying |y| = cos x and y = s...

    Text Solution

    |

  20. The set of values of k for which x^2 - kx + sin^-1 (sin 4) > 0 for all...

    Text Solution

    |