Home
Class 12
MATHS
If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="...

If `A="tan"^(-1)((xsqrt3)/(2K-x))` and `B="tan"^(-1)((2x-K)/(Ksqrt3))`, then the value of `A-B` is

A

`0^@`

B

`45^@`

C

`60^@`

D

`30^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A - B \) where: \[ A = \tan^{-1}\left(\frac{x \sqrt{3}}{2K - x}\right) \] \[ B = \tan^{-1}\left(\frac{2x - K}{K \sqrt{3}}\right) \] We will use the identity for the difference of two inverse tangent functions: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] ### Step 1: Apply the identity We can apply the identity to find \( A - B \): \[ A - B = \tan^{-1}\left(\frac{\frac{x \sqrt{3}}{2K - x} - \frac{2x - K}{K \sqrt{3}}}{1 + \left(\frac{x \sqrt{3}}{2K - x}\right)\left(\frac{2x - K}{K \sqrt{3}}\right)}\right) \] ### Step 2: Simplify the numerator To simplify the numerator: \[ \frac{x \sqrt{3}}{2K - x} - \frac{2x - K}{K \sqrt{3}} = \frac{x \sqrt{3} \cdot K \sqrt{3} - (2x - K)(2K - x)}{(2K - x)K \sqrt{3}} \] Calculating the numerator: \[ = \frac{3Kx - (4xK - 2x^2 + K^2)}{(2K - x)K \sqrt{3}} = \frac{3Kx - 4xK + 2x^2 - K^2}{(2K - x)K \sqrt{3}} = \frac{-Kx + 2x^2 - K^2}{(2K - x)K \sqrt{3}} \] ### Step 3: Simplify the denominator Now, we simplify the denominator: \[ 1 + \left(\frac{x \sqrt{3}}{2K - x}\right)\left(\frac{2x - K}{K \sqrt{3}}\right) = 1 + \frac{x(2x - K)}{(2K - x)K} \] Combining terms gives: \[ = \frac{(2K - x)K + x(2x - K)}{(2K - x)K} = \frac{2K^2 - Kx + 2x^2 - Kx}{(2K - x)K} = \frac{2K^2 + 2x^2 - 2Kx}{(2K - x)K} \] ### Step 4: Combine the results Now we can combine the results from the numerator and denominator: \[ A - B = \tan^{-1}\left(\frac{-Kx + 2x^2 - K^2}{2K^2 + 2x^2 - 2Kx}\right) \] ### Step 5: Factor out common terms Factoring out common terms in the numerator and denominator: \[ = \tan^{-1}\left(\frac{2x^2 - Kx - K^2}{2(x^2 - Kx + K^2)}\right) \] ### Step 6: Evaluate the expression The expression simplifies to: \[ = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \] ### Final Result Thus, we find: \[ A - B = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 1: (CONCEPT BUILDER)|60 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

If A=tan^(-1)((x sqrt(3))/(2k-x)) and B=tan^(-1)((2x-k)/(k sqrt(3))) then find the value of A-B(A)0^(@)(B)30^(@)(C)60^(@)(D)45^(@)

If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt3)) then one value of phi - psi is

if phi=tan^(-1)((x sqrt(3))/(2k-x)) and theta=tan^(-1)((2x-k)/(k sqrt(3))) then one of the value of phi-theta is

If alpha = tan^(-1) ((xsqrt(3))/(2y - x)) and beta = tan^(-1) ((2x - y)/(ysqrt(3))) evaluate : alpha - beta .

tan(A+B)=(1)/(2),tan(A-B)=(1)/(3), then find the value of tan2A

If tan A= 1/2 and tan B= 1/3 , then the value of A+B is

If tan(A+B)=(1)/(2),tan(A-B)=(1)/(3) , then find the value of tan2A .

int(x+1)/(x^(2)+x+3)dx=a ln|x^(2)+x+3|+(1)/(sqrt(b))tan^(-1)((cx+d)/(sqrt(11)))+k then the value of 2a+b+c+d is 15 b.26c*(29)/(2)d.13

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 2: (CONCEPT APPLICATOR)
  1. If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are al...

    Text Solution

    |

  2. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then

    Text Solution

    |

  3. Q. the value of tan^-1(a/(b+c))+tan^-1(b/(c+a)), if /=90^@ in triangle...

    Text Solution

    |

  4. If 1/2"sin"^(-1)(2x)/(1+x^2)+1/2"cos"^(-1)(1-y^2)/(1+y^2)+1/3"tan"^(-1...

    Text Solution

    |

  5. If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4)"than ...

    Text Solution

    |

  6. If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="tan"^(-1)((2x-K)/(Ksqrt3)), th...

    Text Solution

    |

  7. If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)...

    Text Solution

    |

  8. Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the g...

    Text Solution

    |

  9. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  10. The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)...

    Text Solution

    |

  11. The minimum integral value of alpha for which the quadratic equation (...

    Text Solution

    |

  12. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  13. Total number of ordered pairs (x, y) satisfying |y| = cos x and y = s...

    Text Solution

    |

  14. The set of values of k for which x^2 - kx + sin^-1 (sin 4) > 0 for all...

    Text Solution

    |

  15. If sin^-1x+sin^-1y+sin^-1z=pi then x^4+y^4+z^4+4x^2y^2z^2=

    Text Solution

    |

  16. Find the value of tan^-1(1/2tan2A)+tan^-1(cotA)+tan^-1(cot^3A)

    Text Solution

    |

  17. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  18. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  19. If "sin"^(-1)x+"sin"^(-1)y=pi/2, then (1+x^4+y^4)/(x^2-x^2y^2+y^2) is ...

    Text Solution

    |

  20. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |