Home
Class 11
MATHS
If a(1),a-(2),a(3),………….a(n) are in A.P....

If `a_(1),a-(2),a_(3),………….a_(n)` are in A.P. with common differecne d, prove that
`sin [cosec a_(1)coseca_(2)+cosec a_(2)cosec a_(3)+………….+cosec a_(n-1)cosec a_(n)]=cota_(1)-cota_(n)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (c) SATQ|7 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (c) LATQ|17 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (b) SATQ|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,...a_n are in A.P with common difference d !=0 then the value of sind(coseca_1 coseca_2 +cosec a_2 cosec a_3+...+cosec a_(n-1) cosec a_n) will be

If a_(1), a_(2), …..,a_(n) are in A.P. with common difference d ne 0, then the sum of the series sin d[sec a_(1)sec a_(2) +..... sec a_(n-1) sec a_(n)] is

If a_1,a_2,a_3,.....,a_n are in AP where a_i ne kpi for all i , prove that cosec a_1* cosec a_2+ cosec a_2* cosec a_3+...+ cosec a_(n-1)* cosec a_n=(cota_1-cota_n)/(sin(a_2-a_1)) .

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_(1),a_(2),a_(3),a_(n) is an A.P.with common difference d, then prove that tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+tan^(-1)((d)/(1+a_(n-1)a_(n)))]=((n-1)d)/(1+a_(1)a_(n))

If a_(1),a_(2),...,a_(n) be an A.P. of positive terms, then

If a_(1),a_(2),a_(3),….a_(n) is a.p with common difference d then tan{tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3))) +..+ tan^(-1)((d)/(1+a_(n-1)a_(n)))} is equal to

MODERN PUBLICATION-SEQUENCES AND SERIES-EXERCISE 9 (a) LATQ
  1. Find the terms indicated in each case: (i) a(n)=4n-3,a(17),a(24) ...

    Text Solution

    |

  2. Find the terms (s) indicated in each case: (i) t(n)=t(n-1)+3(ngt1),t...

    Text Solution

    |

  3. Write the first five terms of the sequence and obtain the correspondi...

    Text Solution

    |

  4. Write the first six terms of each of following sequences, (i) a(1)=-...

    Text Solution

    |

  5. The sequence a(n)is defined by: a(n)=(n-1)(n-2)(n-3). Show that th...

    Text Solution

    |

  6. a. Find the 21 st and 42 nd terms of the sequence defined by: t(n)=...

    Text Solution

    |

  7. If a0=1,a1=3 and an^2 -a(n-1)*a(n+1)=(-1)^n. Find a3.

    Text Solution

    |

  8. Consider the sequence defined by t(n)=an^(2)+bn+c If t(2)=3,t(4)=13 an...

    Text Solution

    |

  9. The third term of an A.P. is 25 and the tenth term is -3. find the fir...

    Text Solution

    |

  10. (i) The 3rd term of an A.P. is 1 and 6 th term is -11. Determine its ...

    Text Solution

    |

  11. The mth term of an A.P. is (1)/(n) and nth term is (1)/(m). Its (mn)th...

    Text Solution

    |

  12. The fourth term of an A.P. is equal to 3 times the first term and seve...

    Text Solution

    |

  13. The 2 nd,31st and last terms of an A.P.are 7 3/4, 1/2 and -6 1/2 respe...

    Text Solution

    |

  14. (i) The pth term of an A.P. is q the 1th term is p, show that rth ter...

    Text Solution

    |

  15. If pth term of an A.P. is c and the qth term is d, what is the rth ter...

    Text Solution

    |

  16. For the A.P., a(1),a(2),a(3),…………… if (a(4))/(a(7))=2/3, find (a(6))/(...

    Text Solution

    |

  17. If a1,a2,a3, ,an are an A.P. of non-zero terms, prove that 1/(a1a2)+...

    Text Solution

    |

  18. If a(1),a-(2),a(3),………….a(n) are in A.P. with common differecne d, pro...

    Text Solution

    |

  19. A man serves Rs. 320 in the month of January Rs. 360 in the month of F...

    Text Solution

    |

  20. If m times the m^(t h) term of an A.P. is equal to n times its n^(t h)...

    Text Solution

    |