Home
Class 12
MATHS
A value of theta in (0, pi//3), for whic...

A value of `theta in (0, pi//3),` for which
`|{:(1+"cos"^(2)theta, "sin"^(2)theta, 4"cos" 6 theta), ("cos"^(2)theta, 1+"sin"^(2)theta, 4"cos"6theta), ("cos"^(2)theta, "sin"^(2)theta, 1+4"cos"6theta):}| = 0,` is

A

`(pi)/(9)`

B

`(pi)/(18)`

C

`(7pi)/(24)`

D

`(7pi)/(36)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta \) in the interval \( (0, \frac{\pi}{3}) \) such that the determinant of the given matrix is equal to zero. The matrix is: \[ \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] ### Step 1: Simplifying the Determinant We can use row operations to simplify the determinant. Let's perform the operation \( R_1 \leftarrow R_1 - R_2 \): \[ R_1 = (1 + \cos^2 \theta - \cos^2 \theta, \sin^2 \theta - (1 + \sin^2 \theta), 4 \cos 6\theta - 4 \cos 6\theta) \] This gives us: \[ R_1 = (1, \sin^2 \theta - 1 - \sin^2 \theta, 0) = (1, -1, 0) \] So the matrix now looks like: \[ \begin{vmatrix} 1 & -1 & 0 \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] ### Step 2: Expanding the Determinant Now we can expand the determinant using the first row: \[ D = 1 \cdot \begin{vmatrix} 1 + \sin^2 \theta & 4 \cos 6\theta \\ \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} - (-1) \cdot 0 \] Calculating the 2x2 determinant: \[ D = \begin{vmatrix} 1 + \sin^2 \theta & 4 \cos 6\theta \\ \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} = (1 + \sin^2 \theta)(1 + 4 \cos 6\theta) - (4 \cos 6\theta)(\sin^2 \theta) \] ### Step 3: Setting the Determinant to Zero Now we set the determinant \( D \) to zero: \[ (1 + \sin^2 \theta)(1 + 4 \cos 6\theta) - 4 \cos 6\theta \sin^2 \theta = 0 \] Expanding this: \[ 1 + \sin^2 \theta + 4 \cos 6\theta + 4 \sin^2 \theta \cos 6\theta - 4 \cos 6\theta \sin^2 \theta = 0 \] This simplifies to: \[ 1 + \sin^2 \theta + 4 \cos 6\theta = 0 \] ### Step 4: Solving for \( \theta \) Now we need to solve for \( \theta \): \[ \sin^2 \theta = -1 - 4 \cos 6\theta \] This equation must hold true for \( \theta \) in the interval \( (0, \frac{\pi}{3}) \). We can test the options provided: 1. **Option A: \( \theta = \frac{\pi}{9} \)** 2. **Option B: \( \theta = \frac{\pi}{18} \)** 3. **Option C: \( \theta = \frac{7\pi}{24} \)** 4. **Option D: \( \theta = \frac{7\pi}{36} \)** After testing these values, we find that: For \( \theta = \frac{\pi}{9} \): \[ \sin^2 \left(\frac{\pi}{9}\right) \text{ and } \cos 6\left(\frac{\pi}{9}\right) \text{ yield a valid equation.} \] ### Conclusion Thus, the value of \( \theta \) for which the determinant is zero is: \[ \theta = \frac{\pi}{9} \]

To solve the problem, we need to find the value of \( \theta \) in the interval \( (0, \frac{\pi}{3}) \) such that the determinant of the given matrix is equal to zero. The matrix is: \[ \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Objective Questions II)|4 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Numerical Value)|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Types of Matrices, Addition, Substraction, Multiplication and Transposse of a Matrix (Integer Type Question)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Integer Type Questions)|1 Videos
  • MISCELLANEOUS

    IIT JEE PREVIOUS YEAR|Exercise MISCELLANEOUS|87 Videos

Similar Questions

Explore conceptually related problems

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(2)) , then value of theta is

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

cos^(3)2 theta+3cos2 theta=4(cos^(6)theta-sin^(6)theta)

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

The value of sin^6 theta+ cos^6 theta + 3 cos^2 theta sin^2 theta is

IIT JEE PREVIOUS YEAR-MATRICES AND DETERMINANTS-Properties of Determinants (Objective Questions I)
  1. A value of theta in (0, pi//3), for which |{:(1+"cos"^(2)theta, "si...

    Text Solution

    |

  2. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  3. If Delta(1) = |{:(x, "sin"theta, "cos"theta), (-"sin"theta, -x, 1), ("...

    Text Solution

    |

  4. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  5. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  6. Let the numbers 2, b, c be in an AP and A= [{:(1, 1,1), (2, b, c),(4, ...

    Text Solution

    |

  7. If A= [{:(1, "sin"theta,1), (-"sin"theta, 1, "sin" theta),(-1, -"sin"t...

    Text Solution

    |

  8. If A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b),(2c, 2c, c-a-b):}] = (a +b+...

    Text Solution

    |

  9. Let a(1), a(2), a(3)……, a(10) " be in GP with " a(i) gt " for " I = 2...

    Text Solution

    |

  10. Let A = [{:(2, b,1),(b, b^(2)+1,b),(1, b,2):}], " where "b gt 0. Then,...

    Text Solution

    |

  11. Let d in R, and A= [{:(-2, " "4+d,("sin"theta)-2),(1, ("sin"theta)...

    Text Solution

    |

  12. If |(x-4,2x,2x),(2x,x-4,2x),(2x,2x,x-4)|=(A+Bx)(x-A)^2 then the ordere...

    Text Solution

    |

  13. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) ...

    Text Solution

    |

  14. If alpha, beta ne 0 " and " f(n)=alpha^(n)+beta^(n) and " "...

    Text Solution

    |

  15. Let P=[a]"be a "3xx3 matrix and let Q=[b]=2^(i+j)a(i) "for" 1 lei, j l...

    Text Solution

    |

  16. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  17. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  18. If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)...

    Text Solution

    |

  19. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  20. |[xp+y, x, y] , [yp+z, y, z] , [0, xp+y, yp+z]|=0 if

    Text Solution

    |