Home
Class 12
MATHS
If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):...

If `[{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdotcdot[{:(1, n-1), (0,1):}] = [{:(1, 78), (0,1):}]`, then the inverse of `[{:(1, n), (0,1):}]` is

A

`[{:(1, 0), (12, 1):}]`

B

`[{:(1, -13), (0, 1):}]`

C

`[{:(1, 0), (13, 1):}]`

D

`[{:(1, -12), (0, 1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the inverse of the matrix \(\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}\) given that the product of a series of matrices equals \(\begin{pmatrix} 1 & 78 \\ 0 & 1 \end{pmatrix}\). ### Step-by-step Solution: 1. **Understanding the Matrix Product**: We are given a product of matrices of the form: \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & n-1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 78 \\ 0 & 1 \end{pmatrix} \] 2. **Calculating the Product**: The product of two matrices of the form \(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}\) results in: \[ \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} \] Therefore, the product of all matrices from \(1\) to \(n-1\) will yield: \[ \begin{pmatrix} 1 & 1 + 2 + 3 + \ldots + (n-1) \\ 0 & 1 \end{pmatrix} \] 3. **Using the Sum of Natural Numbers**: The sum of the first \(n-1\) natural numbers is given by: \[ S = \frac{(n-1)n}{2} \] Thus, we have: \[ \begin{pmatrix} 1 & \frac{(n-1)n}{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 78 \\ 0 & 1 \end{pmatrix} \] 4. **Setting Up the Equation**: From the equality of the matrices, we can equate the upper right elements: \[ \frac{(n-1)n}{2} = 78 \] Multiplying both sides by \(2\): \[ (n-1)n = 156 \] 5. **Forming a Quadratic Equation**: Rearranging gives us: \[ n^2 - n - 156 = 0 \] 6. **Factoring the Quadratic**: We can factor this as: \[ n^2 - 13n + 12n - 156 = 0 \] This factors to: \[ (n - 13)(n + 12) = 0 \] Thus, \(n = 13\) or \(n = -12\). Since \(n\) must be a positive integer, we take \(n = 13\). 7. **Finding the Matrix**: The matrix we are interested in is: \[ A = \begin{pmatrix} 1 & 13 \\ 0 & 1 \end{pmatrix} \] 8. **Calculating the Inverse**: The inverse of a matrix of the form \(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}\) is given by: \[ A^{-1} = \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \] Therefore, the inverse is: \[ A^{-1} = \begin{pmatrix} 1 & -13 \\ 0 & 1 \end{pmatrix} \] ### Final Answer: The inverse of \(\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}\) when \(n = 13\) is: \[ \begin{pmatrix} 1 & -13 \\ 0 & 1 \end{pmatrix} \]

To solve the given problem, we need to find the inverse of the matrix \(\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}\) given that the product of a series of matrices equals \(\begin{pmatrix} 1 & 78 \\ 0 & 1 \end{pmatrix}\). ### Step-by-step Solution: 1. **Understanding the Matrix Product**: We are given a product of matrices of the form: \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & n-1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 78 \\ 0 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Objective Questions II)|4 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Numerical Value)|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Types of Matrices, Addition, Substraction, Multiplication and Transposse of a Matrix (Integer Type Question)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Integer Type Questions)|1 Videos
  • MISCELLANEOUS

    IIT JEE PREVIOUS YEAR|Exercise MISCELLANEOUS|87 Videos

Similar Questions

Explore conceptually related problems

Let {:[(1,2),(0,1):}][{:(1,2),(0,1):}]......[{:(1,n-1),(0,1):}]=[{:(1,78),(0,1):}] If A=[{:(1,n),(0,1):}] then A^(-1)=

If [{:(1,3),(0,1):}]A=[{:(1,-1),(0,1):}] , then what is the matrix A ?

If A=[{:(1,1),(0,1):}] , prove that A=[{:(1,n),(0,1):}] for all n inN.

If [[1,3] , [0,1]] A = [[1,1] , [0,-1]] then find the value of A

If [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}] =A, then find the value of A.

if [{:(1,2,a),(0,1,4),(0,0,1):}]=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

IIT JEE PREVIOUS YEAR-MATRICES AND DETERMINANTS-Properties of Determinants (Objective Questions I)
  1. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  2. If Delta(1) = |{:(x, "sin"theta, "cos"theta), (-"sin"theta, -x, 1), ("...

    Text Solution

    |

  3. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  4. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  5. Let the numbers 2, b, c be in an AP and A= [{:(1, 1,1), (2, b, c),(4, ...

    Text Solution

    |

  6. If A= [{:(1, "sin"theta,1), (-"sin"theta, 1, "sin" theta),(-1, -"sin"t...

    Text Solution

    |

  7. If A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b),(2c, 2c, c-a-b):}] = (a +b+...

    Text Solution

    |

  8. Let a(1), a(2), a(3)……, a(10) " be in GP with " a(i) gt " for " I = 2...

    Text Solution

    |

  9. Let A = [{:(2, b,1),(b, b^(2)+1,b),(1, b,2):}], " where "b gt 0. Then,...

    Text Solution

    |

  10. Let d in R, and A= [{:(-2, " "4+d,("sin"theta)-2),(1, ("sin"theta)...

    Text Solution

    |

  11. If |(x-4,2x,2x),(2x,x-4,2x),(2x,2x,x-4)|=(A+Bx)(x-A)^2 then the ordere...

    Text Solution

    |

  12. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) ...

    Text Solution

    |

  13. If alpha, beta ne 0 " and " f(n)=alpha^(n)+beta^(n) and " "...

    Text Solution

    |

  14. Let P=[a]"be a "3xx3 matrix and let Q=[b]=2^(i+j)a(i) "for" 1 lei, j l...

    Text Solution

    |

  15. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  16. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  17. If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)...

    Text Solution

    |

  18. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  19. |[xp+y, x, y] , [yp+z, y, z] , [0, xp+y, yp+z]|=0 if

    Text Solution

    |

  20. Consider the set A of all determinants of order 3 with entries 0 or 1 ...

    Text Solution

    |