Home
Class 12
MATHS
If A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b)...

If `A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b),(2c, 2c, c-a-b):}]`
`= (a +b+c) (x +a +b+c)^(2), x ne 0 " and " a +b +c ne 0`, then x is equal to

A

`-(a +b+c)`

B

`-2(a+b+c)`

C

`2(a+b+c)`

D

abc

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given the matrix \( A \) and the equation involving the determinant of \( A \). Let's denote the matrix \( A \) as follows: \[ A = \begin{pmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{pmatrix} \] We are given that: \[ \text{det}(A) = (a + b + c)(x + a + b + c)^2 \] and we need to find \( x \) under the conditions \( x \neq 0 \) and \( a + b + c \neq 0 \). ### Step 1: Calculate the Determinant of Matrix A To find the determinant of the matrix \( A \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] Substituting the elements of matrix \( A \): \[ \text{det}(A) = (a - b - c) \left( (b - c - a)(c - a - b) - (2b)(2c) \right) - (2a) \left( (2b)(c - a - b) - (2b)(2c) \right) + (2a) \left( (2b)(2c) - (b - c - a)(2c) \right) \] ### Step 2: Simplifying the Determinant Now we will simplify the expression obtained from the determinant calculation. This involves expanding the terms and combining like terms. 1. Expand the first term: \[ (b - c - a)(c - a - b) - 4bc \] This will yield a quadratic expression in terms of \( a, b, c \). 2. Expand the second term: \[ 2a \left( 2bc - 2b(c - a - b) \right) \] This will also yield a quadratic expression. 3. Expand the third term: \[ 2a \left( 4bc - 2c(b - c - a) \right) \] This will yield another expression. After performing these calculations, we will combine all the terms to find the determinant \( \text{det}(A) \). ### Step 3: Set the Determinant Equal to the Given Expression Once we have the determinant \( \text{det}(A) \), we set it equal to the expression \( (a + b + c)(x + a + b + c)^2 \). ### Step 4: Solve for \( x \) To find \( x \), we will isolate \( x \) from the equation obtained in Step 3. This may involve factoring or simplifying the expression further. ### Final Step: Conclusion After isolating \( x \), we will arrive at the final value of \( x \).

To solve the problem, we need to find the value of \( x \) given the matrix \( A \) and the equation involving the determinant of \( A \). Let's denote the matrix \( A \) as follows: \[ A = \begin{pmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Objective Questions II)|4 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Numerical Value)|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Types of Matrices, Addition, Substraction, Multiplication and Transposse of a Matrix (Integer Type Question)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Integer Type Questions)|1 Videos
  • MISCELLANEOUS

    IIT JEE PREVIOUS YEAR|Exercise MISCELLANEOUS|87 Videos

Similar Questions

Explore conceptually related problems

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c^2) then thhe value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

If the lines (a-b-c) x + 2ay + 2a = 0 , 2bx + ( b- c - a) y + 2b = 0 and (2c+1) x + 2cy + c - a - b = 0 are concurrent , then the prove that either a+b+ c = 0 or (a+b+c)^(2) + 2a = 0

If x ^(2) +bx+b is a factor of x ^(3) +2x ^(2)+2x + c (c ne 0), then b-c is :

If a,b,c gt 0, then (a )/(2a + b +c ) = (b)/(a + 2b +c)= (c )/(a +b + 2c) = ?

IIT JEE PREVIOUS YEAR-MATRICES AND DETERMINANTS-Properties of Determinants (Objective Questions I)
  1. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  2. If Delta(1) = |{:(x, "sin"theta, "cos"theta), (-"sin"theta, -x, 1), ("...

    Text Solution

    |

  3. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  4. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  5. Let the numbers 2, b, c be in an AP and A= [{:(1, 1,1), (2, b, c),(4, ...

    Text Solution

    |

  6. If A= [{:(1, "sin"theta,1), (-"sin"theta, 1, "sin" theta),(-1, -"sin"t...

    Text Solution

    |

  7. If A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b),(2c, 2c, c-a-b):}] = (a +b+...

    Text Solution

    |

  8. Let a(1), a(2), a(3)……, a(10) " be in GP with " a(i) gt " for " I = 2...

    Text Solution

    |

  9. Let A = [{:(2, b,1),(b, b^(2)+1,b),(1, b,2):}], " where "b gt 0. Then,...

    Text Solution

    |

  10. Let d in R, and A= [{:(-2, " "4+d,("sin"theta)-2),(1, ("sin"theta)...

    Text Solution

    |

  11. If |(x-4,2x,2x),(2x,x-4,2x),(2x,2x,x-4)|=(A+Bx)(x-A)^2 then the ordere...

    Text Solution

    |

  12. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) ...

    Text Solution

    |

  13. If alpha, beta ne 0 " and " f(n)=alpha^(n)+beta^(n) and " "...

    Text Solution

    |

  14. Let P=[a]"be a "3xx3 matrix and let Q=[b]=2^(i+j)a(i) "for" 1 lei, j l...

    Text Solution

    |

  15. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  16. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  17. If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)...

    Text Solution

    |

  18. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  19. |[xp+y, x, y] , [yp+z, y, z] , [0, xp+y, yp+z]|=0 if

    Text Solution

    |

  20. Consider the set A of all determinants of order 3 with entries 0 or 1 ...

    Text Solution

    |