Home
Class 12
MATHS
"Let "plambda^(4) + qlambda^(3) +rlambda...

`"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}|` be an identity in `lambda`, where p,q,r,s and t are constants. Then, the value of t is..... .

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the determinant given in the question and equate it to the polynomial expression on the left side. We will find the value of \( t \) by expanding the determinant. ### Step 1: Write down the determinant The determinant we need to evaluate is: \[ D = \begin{vmatrix} \lambda^2 + 3\lambda & \lambda - 1 & \lambda + 3 \\ \lambda + 1 & -2\lambda & \lambda - 4 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (True/False)|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Analytical and Descriptive Questions)|15 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Numerical Value)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Integer Type Questions)|1 Videos
  • MISCELLANEOUS

    IIT JEE PREVIOUS YEAR|Exercise MISCELLANEOUS|87 Videos

Similar Questions

Explore conceptually related problems

Let p lambda^(4)+q lambda^(3)+r lambda^(2)+s lambda+t=|[lambda^(2)+3 lambda,lambda-1,lambda-3],[lambda-1,-2 lambda,lambda-4],[lambda-3,lambda+3,3 lambda]| be an identity in lambda ,where p,q,r,s and t are constants.Then the value of t is

If plambda^4+qlambda^3+rlambda^2+slambda+t=|(lambda^2+3lambda,lambda-1,lambda+3),(lambda+1,2-lambda,lambda-4),(lambda-3,lambda+4,3lambda)|, then value of t is

p(lambda)^4+q(lambda)^3+r(lambda)^2+s(lambda)+t = |((lambda^2 + 3lambda) , lambda -1 , lambda+3) , (lambda +1 , -2lambda , lambda-4 ) ,(lambda-3 , lambda+4 , 3lambda)| find t=?

If plambda^4+qlambda^3+rlambda^2+slambda+t=|lambda^2+3lambdalambda-1lambda+3lambda^2+1 2-lambdalambda-3lambda^2-3lambda+4 3lambda| , then p= -5 (2) -4 (3) -3 -2

lambda ^ (3) -6 lambda ^ (2) -15 lambda-8 = 0

If p lambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(2)+c^(2), a^(2) + lambda , a^(2) + lambda),(b^(2)+lambda,c^(2)+a^(2),b^(2)+lambda),(c^(2)+lambda,c^(2)+lambda,a^(2)+b^(2)):}| is an identity in lambda wherep, q, r,s , t are constants, then the value of t is

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e=|[lambda^(2)-3,lambda-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

If |[lambda^(2)+3 lambda,lambda-1,lambda+3],[lambda+1,2-lambda,lambda-4],[lambda-3,lambda+4,3 lambda]|=p lambda^(4)+q lambda^(3)+r lambda^(2)+s lambda+t then t=

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e = |[lambda^(2)-3,-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.