Home
Class 12
MATHS
lim(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 s...

`lim_(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 sin x + 1)-sqrt(sin^(2) x - x+ 1))`is

A

6

B

2

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{x + 2 \sin x}{\sqrt{x^2 + 2 \sin x + 1} - \sqrt{\sin^2 x - x + 1}}, \] we'll follow these steps: ### Step 1: Evaluate the limit directly First, substitute \(x = 0\) into the expression: \[ \frac{0 + 2 \sin(0)}{\sqrt{0^2 + 2 \sin(0) + 1} - \sqrt{\sin^2(0) - 0 + 1}} = \frac{0}{\sqrt{1} - \sqrt{1}} = \frac{0}{0}. \] Since we get the indeterminate form \( \frac{0}{0} \), we need to manipulate the expression. **Hint:** If you encounter \( \frac{0}{0} \), consider rationalizing the denominator or using L'Hôpital's rule. ### Step 2: Rationalize the denominator To simplify the expression, we can rationalize the denominator: \[ \lim_{x \to 0} \frac{(x + 2 \sin x)(\sqrt{x^2 + 2 \sin x + 1} + \sqrt{\sin^2 x - x + 1})}{( \sqrt{x^2 + 2 \sin x + 1} - \sqrt{\sin^2 x - x + 1})(\sqrt{x^2 + 2 \sin x + 1} + \sqrt{\sin^2 x - x + 1})}. \] The denominator simplifies to: \[ (x^2 + 2 \sin x + 1) - (\sin^2 x - x + 1) = x^2 + 2 \sin x + 1 - \sin^2 x + x - 1. \] This simplifies to: \[ x^2 + x + 2 \sin x - \sin^2 x. \] **Hint:** Rationalizing the denominator can help eliminate the indeterminate form. ### Step 3: Simplify the expression Now, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{(x + 2 \sin x)(\sqrt{x^2 + 2 \sin x + 1} + \sqrt{\sin^2 x - x + 1})}{x^2 + x + 2 \sin x - \sin^2 x}. \] ### Step 4: Evaluate the limit again Now substitute \(x = 0\) again into the simplified expression. The numerator becomes: \[ (0 + 2 \sin(0))(\sqrt{0^2 + 2 \sin(0) + 1} + \sqrt{\sin^2(0) - 0 + 1}) = 0. \] The denominator becomes: \[ 0^2 + 0 + 2 \sin(0) - \sin^2(0) = 0. \] We still have \( \frac{0}{0} \). So we apply L'Hôpital's Rule. **Hint:** If you still get \( \frac{0}{0} \) after simplification, apply L'Hôpital's Rule. ### Step 5: Apply L'Hôpital's Rule Differentiate the numerator and the denominator: - The derivative of the numerator \(x + 2 \sin x\) is \(1 + 2 \cos x\). - The derivative of the denominator \(x^2 + x + 2 \sin x - \sin^2 x\) is \(2x + 1 + 2 \cos x - 2 \sin x \cos x\). Now, we have: \[ \lim_{x \to 0} \frac{1 + 2 \cos x}{2x + 1 + 2 \cos x - 2 \sin x \cos x}. \] ### Step 6: Substitute \(x = 0\) again Now substitute \(x = 0\): \[ \frac{1 + 2 \cdot 1}{2 \cdot 0 + 1 + 2 \cdot 1 - 2 \cdot 0 \cdot 1} = \frac{1 + 2}{0 + 1 + 2 - 0} = \frac{3}{3} = 1. \] ### Final Answer Thus, the limit is: \[ \boxed{1}. \]

To solve the limit \[ \lim_{x \to 0} \frac{x + 2 \sin x}{\sqrt{x^2 + 2 \sin x + 1} - \sqrt{\sin^2 x - x + 1}}, \] we'll follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 0/0 and infty/infty Form (Objective Question II)|2 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 0/0 and infty/infty Form (Fill in the Blanks)|6 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x+2sin x)/(sqrt(x^(2)+2sin x+1)-sqrt(sin^(2)x-x+1))

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))

lim_(x to 0) (sin^(2) x)/(sqrt2 - sqrt(1+cos x)) equals