Home
Class 12
MATHS
If the function f defined on (pi/6,pi/3)...

If the function f defined on `(pi/6,pi/3)` by `{{:((sqrt2 cos x -1)/(cot x -1)" , " x ne pi/4),(" is continuous,"),(" k , "x=pi/4 ):}`
then k is equal to

A

`1/2`

B

2

C

1

D

`1/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A

Given functions is
` f(x) = {{:((sqrt2 cos x -1)/(cot x -1)" ," x ne pi/4),(" k ,"x= pi/4):}`
`:' ` Function f(x) is continuous, so it is continuous at ` x = pi/4`.
`:." " f(pi/4) = underset( x to pi/4) lim f(x) `
` rArr" " k = underset( x to pi/4) lim (sqrt2 cos x -1)/( cot x -1) `
Put ` x = pi/4 + h," when " x to pi/4," then " h to 0`
` k = underset( h to 0) lim (sqrt2 cos (pi/4 + h)-1)/( cot (pi/4 + h) -1) `
` = underset( h to 0) lim (sqrt2[1/sqrt2 cos h - 1/sqrt2 sin h]-1)/((cot h -1)/(cot h + 1)-1)`
`[:' ` cos (x+y) = cos x cos y - sin x sin y and cot (x+y) = `(cot x cot y-1)/(cot y+ cot x) ]`
` = underset( h to 0) lim (cos h - sin h -1)/((-2)/(1+cot h))`
`= underset( h to 0) lim [((1-cos h)+sin h)/(2sin h) (sin h+ cos h)]`
` = underset( h to 0) lim [(2sin^(2).h/2+2 sin. h/2 cos. h/2)/(4 sin. h/2 cos. h/2)(sin h+ cos h)]`
` = underset( h to 0) lim [(sin.h/2+ cos.h/2)/(2 cos.h/2) xx (sin h+ cos h)] rArr k = 1/2`
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise (Objective Questions II)|4 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise (Numerical Value)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 1^(infty) Form, RHL and LHL (Integer Answer Type Question)|1 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)={((sqrt(2+cosx)-1)/(pi-x)^2 ,; x != pi), (k, ; x = pi):} is continuous at x = 1, then k equals:

If f (x) = {{:((1- sqrt2sin x )/(pi - 4 x )",",, x ne (pi)/(4)),(a" "",",,x = (pi)/(4)):} is continuous at x = (pi)/(4) , then a =

Examine the function, f(x) = {{:((cos x)/(pi//2 -x)",",x ne pi//2),(1",",x = pi//2):} for continuity at x = pi//2

Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x) ", "x ne pi),((1)/(2) ", " x=pi):}, at =pi .

If f(x) = (1- cos 7(x-pi))/(x-pi), (x ne pi) is continuous at x =pi , then f(pi) equals-

If f (x) is continuous at x=pi, where f(x) =(sqrt(2+cos x)-1)/((pi-2)^(2)), "for" x ne pi, find f(pi).

If f(x) = {{:((k cos x)/(pi - 2x), x ne pi//2),(1, x = pi//2):} , is a continous function at x = pi//2 , then the value of k is-