Home
Class 11
MATHS
Using binomial theorem, evaluate : (101)...

Using binomial theorem, evaluate : `(101)^4`

Text Solution

AI Generated Solution

To evaluate \( (101)^4 \) using the Binomial Theorem, we can express \( 101 \) as \( (100 + 1) \). The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \( a = 100 \), \( b = 1 \), and \( n = 4 \). Thus, we can expand \( (100 + 1)^4 \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT|Exercise SOLVED EXAMPLES|17 Videos
  • BINOMIAL THEOREM

    NCERT|Exercise EXERCISE 8.2|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.4|6 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem,evaluate: (102)^(5)

Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

Using binomial theorem,evaluate: (96)^(3)

Using binomial theorem,evaluate: (99)^(5)

Using the binomial theorem,evaluate (102)^(5)

Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

Using Binomial theorem, evaluate (0.99)^15 correct to fur places of decimal.

Using binomial theorem, find the value of (103)^(4) .

Using binomial theorem, prove that (101)^(50) gt(100^(50)+99^(50)).

Using binomial theorem, evaluate each of the following: (i) (104)^(4) (ii) (98)^(4) (iii) (1.2)^(4)