Home
Class 12
MATHS
Eccentricity of ellipse whose equation i...

Eccentricity of ellipse whose equation is
x=3 (cos t + sin t), y = 4 (cos t - sin t) where t is parameter is

A

`1//2`

B

`1//sqrt3`

C

`sqrt7//4`

D

`2//sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the ellipse given by the parametric equations \( x = 3(\cos t + \sin t) \) and \( y = 4(\cos t - \sin t) \), we can follow these steps: ### Step 1: Write the equations in terms of \( \cos t \) and \( \sin t \) From the given parametric equations: \[ x = 3(\cos t + \sin t) \quad \text{and} \quad y = 4(\cos t - \sin t) \] ### Step 2: Rearrange the equations We can express \( \cos t \) and \( \sin t \) in terms of \( x \) and \( y \): \[ \cos t + \sin t = \frac{x}{3} \quad \text{(1)} \] \[ \cos t - \sin t = \frac{y}{4} \quad \text{(2)} \] ### Step 3: Square both equations Now, we square both equations (1) and (2): \[ (\cos t + \sin t)^2 = \left(\frac{x}{3}\right)^2 \quad \Rightarrow \quad \cos^2 t + 2\cos t \sin t + \sin^2 t = \frac{x^2}{9} \] \[ (\cos t - \sin t)^2 = \left(\frac{y}{4}\right)^2 \quad \Rightarrow \quad \cos^2 t - 2\cos t \sin t + \sin^2 t = \frac{y^2}{16} \] ### Step 4: Use the identity \( \cos^2 t + \sin^2 t = 1 \) Adding both squared equations: \[ \left(\cos^2 t + \sin^2 t\right) + \left(\cos^2 t + \sin^2 t\right) = \frac{x^2}{9} + \frac{y^2}{16} \] This simplifies to: \[ 2 = \frac{x^2}{9} + \frac{y^2}{16} \] ### Step 5: Rearrange to standard form of the ellipse Multiply through by 144 (the least common multiple of 9 and 16) to eliminate the denominators: \[ 288 = 16x^2 + 9y^2 \] Rearranging gives: \[ \frac{x^2}{18} + \frac{y^2}{32} = 1 \] ### Step 6: Identify \( a^2 \) and \( b^2 \) From the standard form of the ellipse \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \): - \( b^2 = 18 \) (thus \( b = \sqrt{18} = 3\sqrt{2} \)) - \( a^2 = 32 \) (thus \( a = \sqrt{32} = 4\sqrt{2} \)) ### Step 7: Calculate \( c \) Using the relationship \( c^2 = a^2 - b^2 \): \[ c^2 = 32 - 18 = 14 \quad \Rightarrow \quad c = \sqrt{14} \] ### Step 8: Calculate the eccentricity \( e \) The eccentricity \( e \) is given by: \[ e = \frac{c}{a} = \frac{\sqrt{14}}{4\sqrt{2}} = \frac{\sqrt{14}}{8} \] Thus, the eccentricity of the ellipse is: \[ e = \frac{\sqrt{7}}{4} \] ### Final Answer: The eccentricity of the ellipse is \( \frac{\sqrt{7}}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise -6)|6 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise -7)|9 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise -4)|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

x=a cos t, y=b sin t

x = a (cos t + sin t), y = a (sin t-cos t)

x = "sin" t, y = "cos" 2t

x=a (t-sin t) , y =a (1-cos t)

x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t

If x=a(cos t+t sin t) and y=a(sin t-t cos t)

x=a(cos t + log tan t/2), y =a sin t

The locus of the point represented by x = 3 (cos t + sin t ) , y = 2 ( cos t - sin t ) is

Prove that the locus of the centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t,-b cos t), and (1,0), where t is a parameter,is circle.