Home
Class 12
MATHS
The value of lim(n->oo)[1/n+(e^(1/n))/n+...

The value of` lim_(n->oo)[1/n+(e^(1/n))/n+(e^(2/n))/n+.....+(e^((n-1)/n))/n]` is :

A

1

B

0

C

e-1

D

e+1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 2)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The value of ("lim")_(xvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))/n]i s 1 (b) 0 (c) e-1 (d) e+1

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

The value of lim_ (n rarr oo) [(1) / (n) + (e ^ ((1) / (n))) / (n) + (e ^ ((2) / (n))) / (n) + .... + (e ^ ((n-1) / (n))) / (n)] is:

The value of lim_(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))+(3e^((3)/(n)))/(n^(2))+…+(2e^(2))/(n)) is

lim_(xto oo) (1)/(n) {1+e^(1//n)+e^(2//n)+e^(3//n)+.....+e^((n-1)/(n))} is equal to

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

lim_(n rarr oo)nln( e(1+(1)/(n))^(1-n))

Evaluate: lim_(n rarr oo)[(1+1/n)(1+2/n)(1+3/n).......(1+n/n)]^(1/n)

Evaluate lim_ (n rarr oo) [(1+ (1) / (n)) 91+ (2) / (n)) .... (1+ (n) / (n))] ^ ((1) /(a))