Home
Class 12
MATHS
Evaluate: ("lim")(xvec0) (sin[cosx])/(1+...

Evaluate: `("lim")_(xvec0)` `(sin[cosx])/(1+[cosx])([dot]` denotes the greatest integer function).

A

equal to 1

B

equal to 0

C

does not exist

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 2)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(sin[cosx])/(1+[cosx]) , ([.] denotes the greatest integer function)

Evaluate: (lim)_(x rarr0)(sin[cos x])/(1+[cos x])([.] denotes the greatest integer function).

("lim")_(x→0^+)("sin"[cosx])/(1-[cosx]) ([.] denotes the greatest integer function) is equal to equal to 1 (b) equal to 0 does not exist (d) none of these

lim_(x->0)(sin[sec^2x])/(1+[cosx]), where [*] denotes greatest integral function, is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is