Home
Class 12
MATHS
underset(x to 0)lim (cos ax-cos bx)/(cos...

`underset(x to 0)lim (cos ax-cos bx)/(cos cx-1)` is equal to `m/n`, where m and n are respectively

A

`a^(2)+b^(2),c^(2)`

B

`c^(2), a^(2)+b^(2)`

C

`a^(2)-b^(2), c^(2)`

D

`c^(2), a^(2)-b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \(\lim_{x \to 0} \frac{\cos(ax) - \cos(bx)}{\cos(cx) - 1}\), we will follow these steps: ### Step 1: Identify the form of the limit When we substitute \(x = 0\): \[ \cos(a \cdot 0) - \cos(b \cdot 0) = \cos(0) - \cos(0) = 1 - 1 = 0 \] and \[ \cos(c \cdot 0) - 1 = \cos(0) - 1 = 1 - 1 = 0 \] This gives us the indeterminate form \(\frac{0}{0}\). ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \(\frac{0}{0}\), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator. The derivative of the numerator \(\cos(ax) - \cos(bx)\) is: \[ -\sin(ax) \cdot a + \sin(bx) \cdot b = -a \sin(ax) + b \sin(bx) \] The derivative of the denominator \(\cos(cx) - 1\) is: \[ -\sin(cx) \cdot c = -c \sin(cx) \] Thus, we rewrite the limit: \[ \lim_{x \to 0} \frac{-a \sin(ax) + b \sin(bx)}{-c \sin(cx)} \] ### Step 3: Substitute \(x = 0\) again Substituting \(x = 0\) into the new limit: \[ -a \sin(a \cdot 0) + b \sin(b \cdot 0) = -a \cdot 0 + b \cdot 0 = 0 \] and \[ -c \sin(c \cdot 0) = -c \cdot 0 = 0 \] We again have the form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again Now we differentiate the numerator and denominator again. The derivative of the numerator \(-a \sin(ax) + b \sin(bx)\) is: \[ -a^2 \cos(ax) + b^2 \cos(bx) \] The derivative of the denominator \(-c \sin(cx)\) is: \[ -c^2 \cos(cx) \] Thus, we rewrite the limit again: \[ \lim_{x \to 0} \frac{-a^2 \cos(ax) + b^2 \cos(bx)}{-c^2 \cos(cx)} \] ### Step 5: Substitute \(x = 0\) one last time Substituting \(x = 0\): \[ -a^2 \cos(a \cdot 0) + b^2 \cos(b \cdot 0) = -a^2 \cdot 1 + b^2 \cdot 1 = -a^2 + b^2 \] and \[ -c^2 \cos(c \cdot 0) = -c^2 \cdot 1 = -c^2 \] Thus, we have: \[ \lim_{x \to 0} \frac{-a^2 + b^2}{-c^2} = \frac{b^2 - a^2}{c^2} \] ### Final Result This can be expressed as: \[ \frac{b^2 - a^2}{c^2} = \frac{-(a^2 - b^2)}{c^2} \] Letting \(m = b^2 - a^2\) and \(n = c^2\), we find that: \[ \frac{m}{n} = \frac{b^2 - a^2}{c^2} \] ### Conclusion Thus, \(m = b^2 - a^2\) and \(n = c^2\).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 2)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

underset(x to 0)(lim) (1-cos x)/(x) is :

lim_(x rarr0)(cos x+a sin bx)^((1)/(x)) is equal to

Evaluate lim_(x to 0) (1 - cos ax)/(1 - cos bx)

lim_ (x rarr0) (cos ax-cos bx) / (x ^ (2))

lim_(m to oo)("cos"(x)/(m))^(m) is equal to

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :

underset( x rarr 0 ) ("lim") ( cos mx )^(n//x^(2))

lim_ (x rarr0) (cos ax-cos bx) / (cos cx-1) cos ax-cos bxlimxveco cos cx-1

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to