Home
Class 12
MATHS
The limit underset(x to 2)lim (2^(x)+2^(...

The limit `underset(x to 2)lim (2^(x)+2^(3-x)-6)/(sqrt2^(-x)-2^(1-x))` is equal to

A

1

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 2} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x}} - 2^{1-x}}, \] we will follow these steps: ### Step 1: Substitute \( x = 2 \) First, we substitute \( x = 2 \) into the expression: \[ 2^2 + 2^{3-2} - 6 = 4 + 2 - 6 = 0, \] and for the denominator: \[ \sqrt{2^{-2}} - 2^{1-2} = \sqrt{\frac{1}{4}} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}, \] if the limit on the right exists. ### Step 3: Differentiate the numerator and denominator 1. **Differentiate the numerator**: The numerator is \( f(x) = 2^x + 2^{3-x} - 6 \). Using the chain rule: - The derivative of \( 2^x \) is \( 2^x \ln(2) \). - The derivative of \( 2^{3-x} \) is \( -2^{3-x} \ln(2) \). Thus, \[ f'(x) = 2^x \ln(2) - 2^{3-x} \ln(2). \] 2. **Differentiate the denominator**: The denominator is \( g(x) = \sqrt{2^{-x}} - 2^{1-x} \). Rewriting \( \sqrt{2^{-x}} \) as \( (2^{-x})^{1/2} = 2^{-x/2} \): - The derivative of \( 2^{-x/2} \) is \( -\frac{1}{2} 2^{-x/2} \ln(2) \). - The derivative of \( 2^{1-x} \) is \( -2^{1-x} \ln(2) \). Thus, \[ g'(x) = -\frac{1}{2} 2^{-x/2} \ln(2) + 2^{1-x} \ln(2). \] ### Step 4: Substitute \( x = 2 \) again Now we substitute \( x = 2 \) into \( f'(x) \) and \( g'(x) \): 1. For \( f'(2) \): \[ f'(2) = 2^2 \ln(2) - 2^{3-2} \ln(2) = 4 \ln(2) - 2 \ln(2) = 2 \ln(2). \] 2. For \( g'(2) \): \[ g'(2) = -\frac{1}{2} 2^{-2/2} \ln(2) + 2^{1-2} \ln(2) = -\frac{1}{2} \cdot \frac{1}{2} \ln(2) + \frac{1}{2} \ln(2) = -\frac{1}{4} \ln(2) + \frac{1}{2} \ln(2) = \frac{1}{4} \ln(2). \] ### Step 5: Calculate the limit Now we can calculate the limit: \[ \lim_{x \to 2} \frac{f'(x)}{g'(x)} = \frac{2 \ln(2)}{\frac{1}{4} \ln(2)} = 2 \cdot 4 = 8. \] ### Final Answer Thus, the limit is \[ \boxed{8}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 1)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

If value of underset(x to a)lim (sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrtx)" is equal to "(2sqrt3)/(m) , where m is equal to

The value of the limit underset(x to oo)lim ((x^(2)-1)/(x^(2)+1))^(x^(2)) equal to

Find the limits : underset(x to oo)lim ((1+x)/(2+x))^((1-sqrtx)//(1-x)) (b) underset(x to oo)lim ((x^(2)+2x-1)/(2x^(2)-3x-2))^((2x+1)//(x-1))

The value of underset(x to 0)lim (sqrt(1+x^(2))-sqrt(1-x^(2)))/(x^(2)) is

The limit underset( x rarr a ) ("Lim") (2 -( a)/(x))^(tan ((pix)/( 2a))) is equal to

lim_(x rarr3)(sqrt(3x)-3)/(sqrt(2x-4)-sqrt(2)) is equal to

If the value of underset(x to 0)lim (sqrt(2+x)-sqrt2)/(x)" is equal to "1/(a sqrt2) then 'a' equals