Home
Class 12
MATHS
For x in R, underset(x to oo)lim ((x-3)/...

For `x in R, underset(x to oo)lim ((x-3)/(x+2))^(x)=`

A

e

B

`e^(-1)`

C

`e^(-5)`

D

`e^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \(\lim_{x \to \infty} \left(\frac{x-3}{x+2}\right)^{x}\), we can follow these steps: ### Step 1: Identify the form of the limit As \(x\) approaches infinity, both the numerator and denominator approach infinity, which gives us the indeterminate form \(\frac{\infty}{\infty}\). Hence, we can rewrite the expression in a more manageable form. ### Step 2: Rewrite the limit We can express the limit as: \[ \lim_{x \to \infty} \left(\frac{x-3}{x+2}\right)^{x} = \lim_{x \to \infty} e^{x \ln\left(\frac{x-3}{x+2}\right)} \] This transformation is useful because it allows us to analyze the exponent separately. ### Step 3: Simplify the logarithm Now we need to simplify the logarithm: \[ \ln\left(\frac{x-3}{x+2}\right) = \ln(x-3) - \ln(x+2) \] Using the properties of logarithms, we can further simplify: \[ \ln\left(\frac{x-3}{x+2}\right) = \ln\left(1 - \frac{3}{x}\right) - \ln\left(1 + \frac{2}{x}\right) \] ### Step 4: Use Taylor expansion for logarithm For large \(x\), we can use the Taylor expansion: \[ \ln(1 + u) \approx u \quad \text{for small } u \] Thus, \[ \ln\left(1 - \frac{3}{x}\right) \approx -\frac{3}{x} \quad \text{and} \quad \ln\left(1 + \frac{2}{x}\right) \approx \frac{2}{x} \] So, \[ \ln\left(\frac{x-3}{x+2}\right) \approx -\frac{3}{x} - \frac{2}{x} = -\frac{5}{x} \] ### Step 5: Substitute back into the limit Now substitute this back into our limit expression: \[ x \ln\left(\frac{x-3}{x+2}\right) \approx x \left(-\frac{5}{x}\right) = -5 \] Thus, we have: \[ \lim_{x \to \infty} x \ln\left(\frac{x-3}{x+2}\right) = -5 \] ### Step 6: Final limit calculation Now substitute this result back into our exponent: \[ \lim_{x \to \infty} e^{x \ln\left(\frac{x-3}{x+2}\right)} = e^{-5} \] ### Final Answer \[ \lim_{x \to \infty} \left(\frac{x-3}{x+2}\right)^{x} = e^{-5} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

underset(x to oo)lim (cos""2/x)^(x^2)=

Find underset(x to oo)lim (1+1/x^2)^x

underset(x to oo)lim (x^2+5x+6)/(x^2-x-6)

Evaluate underset(x to oo) lim ([x])/(2x)

The value of the limit underset(x to oo)lim ((x^(2)-1)/(x^(2)+1))^(x^(2)) equal to

underset( x rarr oo) ( "Lim") ((x+ 2)/( x-2))^(x+1)=

Find the limits : underset(x to oo)lim ((1+x)/(2+x))^((1-sqrtx)//(1-x)) (b) underset(x to oo)lim ((x^(2)+2x-1)/(2x^(2)-3x-2))^((2x+1)//(x-1))

Find the limits : (a) underset(x to oo)lim ((2x^(2)+3)/(2x^(2)+5))^(8x^(2)+3) (b) underset(x to 0)lim ((1+tan x)/(1+tan x))^(1//sin x) (c ) underset(x to 1)lim (1+sin pi x)^(cot pi x) (d) underset(x to a)lim ((sin x)/(sin a))^(1//(x-a)) (a ne kpi," with k integer")

DISHA PUBLICATION-LIMITS AND DERIVATIVES-Exercise -2 : Concept Applicator
  1. If : f(x){:( =1", ... x is rational"),(=0", ...x is irr...

    Text Solution

    |

  2. For x in R, underset(x to oo)lim ((x-3)/(x+2))^(x)=

    Text Solution

    |

  3. If y=(1+x^((1)/(4)))(1+x^((1)/(2)))(1-x^((1)/(4))), then what is (dy)/...

    Text Solution

    |

  4. If underset(x to 0)lim ((sin n x)[(a-n) nx-tan x])/(x^(2))=0, then the...

    Text Solution

    |

  5. underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

    Text Solution

    |

  6. If y=1/(1+x^(beta-alpha)+x^(gamma-alpha))+1/(1+x^(alpha-beta)+x^(gamm...

    Text Solution

    |

  7. lim(x->0)((cosx)^(1/2)-(cosx)^(1/3))/(sin^2x) is

    Text Solution

    |

  8. lim(x->0)((cosx)^(1/2)-(cosx)^(1/3))/(sin^2x) is

    Text Solution

    |

  9. Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then ...

    Text Solution

    |

  10. If underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x t...

    Text Solution

    |

  11. Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

    Text Solution

    |

  12. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  13. The value of lim(xto0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  14. If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and under...

    Text Solution

    |

  15. Evaluate underset(xto2)lim(x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Text Solution

    |

  16. underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is...

    Text Solution

    |

  17. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  18. If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "unders...

    Text Solution

    |

  19. The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta...

    Text Solution

    |

  20. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |