Home
Class 12
MATHS
underset(n to oo)lim ((n^(2)-n+1)/(n^(2)...

`underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))`

A

e

B

`e^(2)`

C

`e^(-1)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n(n-1)}, \] we will follow these steps: ### Step 1: Analyze the limit expression As \( n \) approaches infinity, both the numerator and denominator approach infinity, leading to an indeterminate form of type \( \frac{\infty}{\infty} \). ### Step 2: Simplify the fraction We can simplify the fraction inside the limit: \[ \frac{n^2 - n + 1}{n^2 - n - 1} = \frac{1 - \frac{n}{n^2} + \frac{1}{n^2}}{1 - \frac{n}{n^2} - \frac{1}{n^2}} = \frac{1 - \frac{1}{n} + \frac{1}{n^2}}{1 - \frac{1}{n} - \frac{1}{n^2}}. \] ### Step 3: Take the limit of the fraction As \( n \to \infty \): \[ \frac{1 - \frac{1}{n} + \frac{1}{n^2}}{1 - \frac{1}{n} - \frac{1}{n^2}} \to \frac{1 - 0 + 0}{1 - 0 - 0} = 1. \] ### Step 4: Identify the form of the limit Now we have: \[ \lim_{n \to \infty} \left( \frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n(n-1)} = 1^{\infty}, \] which is again an indeterminate form. ### Step 5: Use logarithmic transformation To resolve this, we can take the natural logarithm: \[ L = \lim_{n \to \infty} n(n-1) \ln\left( \frac{n^2 - n + 1}{n^2 - n - 1} \right). \] ### Step 6: Expand the logarithm Using the expansion of \( \ln(1 + x) \approx x \) for small \( x \): \[ \ln\left( \frac{n^2 - n + 1}{n^2 - n - 1} \right) = \ln\left( 1 + \frac{2}{n^2 - n - 1} \right) \approx \frac{2}{n^2 - n - 1}. \] ### Step 7: Substitute back into the limit Thus, \[ L \approx \lim_{n \to \infty} n(n-1) \cdot \frac{2}{n^2 - n - 1}. \] ### Step 8: Simplify the expression As \( n \to \infty \), \( n^2 - n - 1 \approx n^2 \): \[ L \approx \lim_{n \to \infty} n(n-1) \cdot \frac{2}{n^2} = \lim_{n \to \infty} \frac{2n(n-1)}{n^2} = \lim_{n \to \infty} 2 \left( 1 - \frac{1}{n} \right) = 2. \] ### Step 9: Exponentiate to find the final limit Thus, we have: \[ L = 2 \implies e^L = e^2. \] ### Final Answer Therefore, the limit is: \[ \lim_{n \to \infty} \left( \frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n(n-1)} = e^2. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

Find underset( n rarr oo )("lim") ( ( 2 n^(3))/( 2n^(2) + 3)- ( 1+ 5n^(2) )/( 5n + 1))

underset( n rarr oo) ( "Lim") ( -3n + (-1)^(n))/(4n-(-1)^(n)) is

Prove that underset( n rarr oo)lim x_(n)=1, if x_(n)=(3^(n)+1)/3^(n) .

Find underset( n rarr oo) ("lim") (sqrt( n^(2) + 1)+ sqrt( n ) )/( sqrt( n ^(2) + 1)- sqrt( n ) )

DISHA PUBLICATION-LIMITS AND DERIVATIVES-Exercise -2 : Concept Applicator
  1. If y=(1+x^((1)/(4)))(1+x^((1)/(2)))(1-x^((1)/(4))), then what is (dy)/...

    Text Solution

    |

  2. If underset(x to 0)lim ((sin n x)[(a-n) nx-tan x])/(x^(2))=0, then the...

    Text Solution

    |

  3. underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

    Text Solution

    |

  4. If y=1/(1+x^(beta-alpha)+x^(gamma-alpha))+1/(1+x^(alpha-beta)+x^(gamm...

    Text Solution

    |

  5. lim(x->0)((cosx)^(1/2)-(cosx)^(1/3))/(sin^2x) is

    Text Solution

    |

  6. lim(x->0)((cosx)^(1/2)-(cosx)^(1/3))/(sin^2x) is

    Text Solution

    |

  7. Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then ...

    Text Solution

    |

  8. If underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x t...

    Text Solution

    |

  9. Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

    Text Solution

    |

  10. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  11. The value of lim(xto0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  12. If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and under...

    Text Solution

    |

  13. Evaluate underset(xto2)lim(x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Text Solution

    |

  14. underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is...

    Text Solution

    |

  15. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  16. If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "unders...

    Text Solution

    |

  17. The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta...

    Text Solution

    |

  18. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  19. The integer n for which lim(x rarr 0) ((cos x-1) ( cos x - e^x))/x^n i...

    Text Solution

    |

  20. The value f underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....

    Text Solution

    |