Home
Class 12
MATHS
If underset(x to 1)lim (ax^(2)+bx+c)/((x...

If `underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x to 1)lim ((x-a)(x-b)(x-c))/((x+1))=`

A

2

B

`3/2`

C

4

D

`5/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 1} \frac{(x-a)(x-b)(x-c)}{(x+1)} \] given that \[ \lim_{x \to 1} \frac{ax^2 + bx + c}{(x-1)^2} = 2. \] ### Step 1: Analyze the given limit condition The limit condition indicates that when \( x = 1 \), both the numerator and denominator approach 0, thus forming a \( \frac{0}{0} \) indeterminate form. This means we can apply L'Hôpital's Rule. ### Step 2: Set up the equations from the limit condition 1. **First Equation**: Since \( ax^2 + bx + c \) must equal 0 when \( x = 1 \): \[ a(1)^2 + b(1) + c = 0 \implies a + b + c = 0 \quad \text{(Equation 1)} \] 2. **Differentiate using L'Hôpital's Rule**: Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}(ax^2 + bx + c) = 2ax + b \] \[ \text{Denominator: } \frac{d}{dx}((x-1)^2) = 2(x-1) \] Now, applying L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{2ax + b}{2(x-1)} \] Again, substituting \( x = 1 \) gives \( 0 \) in the denominator, so we apply L'Hôpital's Rule again. 3. **Second Equation**: Differentiate again: \[ \text{Numerator: } \frac{d}{dx}(2ax + b) = 2a \] \[ \text{Denominator: } \frac{d}{dx}(2(x-1)) = 2 \] Thus, we have: \[ \lim_{x \to 1} \frac{2a}{2} = a \] Setting this equal to 2 (from the limit condition): \[ a = 2 \quad \text{(Equation 2)} \] ### Step 3: Solve for \( b \) and \( c \) Substituting \( a = 2 \) into Equation 1: \[ 2 + b + c = 0 \implies b + c = -2 \quad \text{(Equation 3)} \] ### Step 4: Use the limit to find \( b \) Now, we need to ensure the limit condition holds true. We already found \( a = 2 \). We also need to ensure that the first derivative at \( x = 1 \) is 0: From the first derivative: \[ 2(2) + b = 0 \implies 4 + b = 0 \implies b = -4 \quad \text{(Equation 4)} \] ### Step 5: Solve for \( c \) Substituting \( b = -4 \) into Equation 3: \[ -4 + c = -2 \implies c = 2 \quad \text{(Equation 5)} \] ### Step 6: Substitute \( a, b, c \) into the limit expression Now we have \( a = 2, b = -4, c = 2 \). We substitute these values into the limit we want to evaluate: \[ \lim_{x \to 1} \frac{(x - 2)(x + 4)(x - 2)}{(x + 1)} \] ### Step 7: Evaluate the limit Substituting \( x = 1 \): \[ = \frac{(1 - 2)(1 + 4)(1 - 2)}{(1 + 1)} = \frac{(-1)(5)(-1)}{2} = \frac{5}{2} \] Thus, the final answer is: \[ \boxed{\frac{5}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

underset(x to 1)lim (sqrt(1-cos 2(x-1)))/(x-1)

If lim_(x rarr1)(ax^(2)+bx+c)/((x-1)^(2))=2, then lim_(x rarr1)((x-a)(x-b)(x-c))/(x+1) is

If lim_(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2 , then (a, b, c) is

Find underset(x to oo)lim (1+1/x^2)^x

underset(x to 0)(lim) (1-cos x)/(x) is :

If lim_(xrarr1)(ax^2+bx+c)/((x-1)^2)=2 , then lim_(xrarr1)((x-a)(x-b)(x-c))/(x+1) , is

underset( x rarr 1 ) ("lim") (1-x)/( 1-x^(2))=

Find the limits : (a) underset(x to oo)lim ((2x^(2)+3)/(2x^(2)+5))^(8x^(2)+3) (b) underset(x to 0)lim ((1+tan x)/(1+tan x))^(1//sin x) (c ) underset(x to 1)lim (1+sin pi x)^(cot pi x) (d) underset(x to a)lim ((sin x)/(sin a))^(1//(x-a)) (a ne kpi," with k integer")

Value of underset(x to 0)lim (a^(sin x)-1)/(sin x) is

DISHA PUBLICATION-LIMITS AND DERIVATIVES-Exercise -2 : Concept Applicator
  1. lim(x->0)((cosx)^(1/2)-(cosx)^(1/3))/(sin^2x) is

    Text Solution

    |

  2. Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then ...

    Text Solution

    |

  3. If underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x t...

    Text Solution

    |

  4. Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

    Text Solution

    |

  5. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  6. The value of lim(xto0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  7. If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and under...

    Text Solution

    |

  8. Evaluate underset(xto2)lim(x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Text Solution

    |

  9. underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is...

    Text Solution

    |

  10. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  11. If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "unders...

    Text Solution

    |

  12. The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta...

    Text Solution

    |

  13. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  14. The integer n for which lim(x rarr 0) ((cos x-1) ( cos x - e^x))/x^n i...

    Text Solution

    |

  15. The value f underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....

    Text Solution

    |

  16. The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

    Text Solution

    |

  17. (lim)(xvec0)(sin(picos^2x))/(x^2) is equal to (1) pi/2 (2) 1 (3) ...

    Text Solution

    |

  18. If underset(x to 0)lim (x^(-3) sin 3x+ax^(-2) +b) exists and is equal ...

    Text Solution

    |

  19. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  20. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |