Home
Class 12
MATHS
Evaluate underset(x to pi/4)lim (1-sin 2...

Evaluate `underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)`

A

`1/4`

B

`1/2`

C

`1/8`

D

`1/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \sin(2x)}{1 + \cos(4x)}, \] we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the expression: \[ 1 - \sin(2 \cdot \frac{\pi}{4}) = 1 - \sin(\frac{\pi}{2}) = 1 - 1 = 0, \] and \[ 1 + \cos(4 \cdot \frac{\pi}{4}) = 1 + \cos(\pi) = 1 - 1 = 0. \] Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \sin(2x)}{1 + \cos(4x)} = \lim_{x \to \frac{\pi}{4}} \frac{\frac{d}{dx}(1 - \sin(2x))}{\frac{d}{dx}(1 + \cos(4x))}. \] ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and denominator: - The derivative of the numerator \( 1 - \sin(2x) \) is: \[ -\cos(2x) \cdot 2 = -2\cos(2x). \] - The derivative of the denominator \( 1 + \cos(4x) \) is: \[ -\sin(4x) \cdot 4 = -4\sin(4x). \] ### Step 4: Rewrite the Limit Now, we rewrite the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{-2\cos(2x)}{-4\sin(4x)} = \lim_{x \to \frac{\pi}{4}} \frac{2\cos(2x)}{4\sin(4x)} = \lim_{x \to \frac{\pi}{4}} \frac{\cos(2x)}{2\sin(4x)}. \] ### Step 5: Substitute \( x = \frac{\pi}{4} \) Again Now we substitute \( x = \frac{\pi}{4} \) again: - For the numerator: \[ \cos(2 \cdot \frac{\pi}{4}) = \cos(\frac{\pi}{2}) = 0, \] - For the denominator: \[ \sin(4 \cdot \frac{\pi}{4}) = \sin(\pi) = 0. \] We still have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 6: Differentiate Again We differentiate again: - The derivative of the numerator \( \cos(2x) \) is: \[ -\sin(2x) \cdot 2 = -2\sin(2x). \] - The derivative of the denominator \( 2\sin(4x) \) is: \[ 2 \cdot 4\cos(4x) = 8\cos(4x). \] ### Step 7: Rewrite the Limit Again Now we rewrite the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{-2\sin(2x)}{8\cos(4x)} = \lim_{x \to \frac{\pi}{4}} \frac{-\sin(2x)}{4\cos(4x)}. \] ### Step 8: Substitute \( x = \frac{\pi}{4} \) Once More Now we substitute \( x = \frac{\pi}{4} \): - For the numerator: \[ -\sin(2 \cdot \frac{\pi}{4}) = -\sin(\frac{\pi}{2}) = -1, \] - For the denominator: \[ 4\cos(4 \cdot \frac{\pi}{4}) = 4\cos(\pi) = 4 \cdot (-1) = -4. \] ### Step 9: Calculate the Limit Now we calculate the limit: \[ \frac{-1}{-4} = \frac{1}{4}. \] Thus, the final answer is: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \sin(2x)}{1 + \cos(4x)} = \frac{1}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate underset(x to pi//6)lim (2sin x-1)/(x-pi/6)

Find the limits: (a) underset(x to 0)lim (arc cos (1-x))/sqrtx (b) underset(x to pi//4)lim (ln tan x)/(1-cot x) (c ) underset(x to 0) lim(1)/(sin x) ln (1+a sin x)

Evaluate lim_(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

The value f underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....+n^(1//cos^(2) x)]^(cos^(2)x) is

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)

Evaluate lim_ (x rarr (pi) / (4)) (1-2sin2x) / (1 + cos4x)

Evaluate lim_(x rarr(pi)/(4))(1-sin2x)/(1+cos4x)

DISHA PUBLICATION-LIMITS AND DERIVATIVES-Exercise -2 : Concept Applicator
  1. Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then ...

    Text Solution

    |

  2. If underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x t...

    Text Solution

    |

  3. Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

    Text Solution

    |

  4. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  5. The value of lim(xto0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  6. If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and under...

    Text Solution

    |

  7. Evaluate underset(xto2)lim(x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Text Solution

    |

  8. underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is...

    Text Solution

    |

  9. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  10. If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "unders...

    Text Solution

    |

  11. The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta...

    Text Solution

    |

  12. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  13. The integer n for which lim(x rarr 0) ((cos x-1) ( cos x - e^x))/x^n i...

    Text Solution

    |

  14. The value f underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....

    Text Solution

    |

  15. The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

    Text Solution

    |

  16. (lim)(xvec0)(sin(picos^2x))/(x^2) is equal to (1) pi/2 (2) 1 (3) ...

    Text Solution

    |

  17. If underset(x to 0)lim (x^(-3) sin 3x+ax^(-2) +b) exists and is equal ...

    Text Solution

    |

  18. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  19. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  20. lim ( x to pi//2 ) ( sec x - tan x ) is equal to

    Text Solution

    |