Home
Class 12
MATHS
underset(n to oo)lim {1/(1-n^(2))+(2)/(1...

`underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))}` is equal to

A

0

B

`-1/2`

C

`1/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + \cdots + \frac{n}{1 - n^2} \right), \] we can follow these steps: ### Step 1: Factor out the common denominator The expression can be rewritten by factoring out \( \frac{1}{1 - n^2} \): \[ \lim_{n \to \infty} \frac{1}{1 - n^2} \left( 1 + 2 + 3 + \cdots + n \right). \] ### Step 2: Use the formula for the sum of the first \( n \) natural numbers The sum \( 1 + 2 + 3 + \cdots + n \) is given by the formula: \[ \frac{n(n + 1)}{2}. \] Substituting this into our limit gives: \[ \lim_{n \to \infty} \frac{1}{1 - n^2} \cdot \frac{n(n + 1)}{2}. \] ### Step 3: Simplify the expression Now we can simplify the expression: \[ \lim_{n \to \infty} \frac{n(n + 1)}{2(1 - n^2)}. \] ### Step 4: Rewrite the denominator The denominator \( 1 - n^2 \) can be factored as \( -(n^2 - 1) \): \[ \lim_{n \to \infty} \frac{n(n + 1)}{-2(n^2 - 1)}. \] ### Step 5: Factor out \( n^2 \) from the denominator We can factor \( n^2 \) out of the denominator: \[ \lim_{n \to \infty} \frac{n(n + 1)}{-2n^2(1 - \frac{1}{n^2})}. \] ### Step 6: Simplify further Now, simplifying the limit gives: \[ \lim_{n \to \infty} \frac{n(n + 1)}{-2n^2} \cdot \frac{1}{1 - \frac{1}{n^2}} = \lim_{n \to \infty} \frac{(n + 1)}{-2n} \cdot \frac{1}{1 - \frac{1}{n^2}}. \] ### Step 7: Evaluate the limit As \( n \to \infty \), \( \frac{1}{1 - \frac{1}{n^2}} \) approaches 1, and \( \frac{(n + 1)}{-2n} \) approaches \( \frac{1}{-2} \): \[ \lim_{n \to \infty} \frac{(n + 1)}{-2n} = \frac{1}{-2}. \] Thus, the limit evaluates to: \[ -\frac{1}{2}. \] ### Final Answer Therefore, the final answer is: \[ \boxed{-\frac{1}{2}}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Lim_(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equal to-

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_ (n rarr oo) [(1) / (1-n ^ (2)) + (2) / (1-n ^ (2)) + ... + (n) / (1-n ^ (2 ))] is

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

lim _(n to oo) ( 1/(n^(2)+1^(2)) + 1/(n^(2)+2^(2)) +...1/(2n^(2))) equals

lim_ (n rarr oo n rarr equal to) [(1) / (1-n ^ (2)) + (2) / (1-n ^ (2)) + ...... + (n) / (1-n ^ (2))]

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=

DISHA PUBLICATION-LIMITS AND DERIVATIVES-Exercise -2 : Concept Applicator
  1. Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

    Text Solution

    |

  2. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  3. The value of lim(xto0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  4. If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and under...

    Text Solution

    |

  5. Evaluate underset(xto2)lim(x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Text Solution

    |

  6. underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is...

    Text Solution

    |

  7. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  8. If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "unders...

    Text Solution

    |

  9. The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta...

    Text Solution

    |

  10. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  11. The integer n for which lim(x rarr 0) ((cos x-1) ( cos x - e^x))/x^n i...

    Text Solution

    |

  12. The value f underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....

    Text Solution

    |

  13. The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

    Text Solution

    |

  14. (lim)(xvec0)(sin(picos^2x))/(x^2) is equal to (1) pi/2 (2) 1 (3) ...

    Text Solution

    |

  15. If underset(x to 0)lim (x^(-3) sin 3x+ax^(-2) +b) exists and is equal ...

    Text Solution

    |

  16. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  17. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  18. lim ( x to pi//2 ) ( sec x - tan x ) is equal to

    Text Solution

    |

  19. underset(xto0)lim[(sin(sgn(x)))/((sgn(x)))], where [.] denotes the gre...

    Text Solution

    |

  20. If f(x)=|cos x|, then f' ((3pi)/(4)) is equal to

    Text Solution

    |