Home
Class 12
MATHS
If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,...

If `f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "underset(x to a)lim` f(x) exists for all

A

`a ne 1`

B

`a ne 0`

C

`a ne -1`

D

`a ne 2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) for which the limit \( \lim_{x \to a} f(x) \) exists, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} |x| + 1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ |x| - 1 & \text{if } x > 0 \end{cases} \] ### Step 1: Identify the function behavior around critical points We need to check the limit as \( x \) approaches 0, since this is where the function definition changes. ### Step 2: Calculate the left-hand limit as \( x \to 0^- \) For \( x < 0 \), the function is defined as \( f(x) = |x| + 1 = -x + 1 \). Thus, we compute: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-x + 1) = -0 + 1 = 1 \] ### Step 3: Calculate the right-hand limit as \( x \to 0^+ \) For \( x > 0 \), the function is defined as \( f(x) = |x| - 1 = x - 1 \). Thus, we compute: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x - 1) = 0 - 1 = -1 \] ### Step 4: Compare the left-hand and right-hand limits We found: \[ \lim_{x \to 0^-} f(x) = 1 \quad \text{and} \quad \lim_{x \to 0^+} f(x) = -1 \] Since the left-hand limit does not equal the right-hand limit, we conclude that: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \] ### Step 5: Determine the values of \( a \) for which the limit exists The limit \( \lim_{x \to a} f(x) \) exists for all \( a \) except where the function is discontinuous. We found that the limit does not exist at \( a = 0 \). ### Conclusion Thus, the limit exists for all \( a \) except \( a = 0 \). Therefore, the final answer is: \[ \text{The limit } \lim_{x \to a} f(x) \text{ exists for all } a \neq 0. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,2x+3, x le 0),(,3(x+1), x gt 0):} then the value of underset(x to 0)lim f(x) is

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is

If f(x) = {(x-1,",", x lt 0),(1/4,",",x = 0),(x^2,",",x gt 0):}

Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0):} , then for all x , f[g(x)] is equal to

Let g(x)=1+x-[x] and f(x)={(-1",",x lt 0),(0",",x=0),(1",",x gt 0):} , then for all x, f[g(x)] is equal to

Consider the function : " "f(x)={{:(x-2",", x lt 0), (" 0,", x=0), (x+2",", x gt 0.):} To find lim_(x to 0) f(x) .

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) x=0

DISHA PUBLICATION-LIMITS AND DERIVATIVES-Exercise -2 : Concept Applicator
  1. Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

    Text Solution

    |

  2. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  3. The value of lim(xto0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  4. If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and under...

    Text Solution

    |

  5. Evaluate underset(xto2)lim(x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Text Solution

    |

  6. underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is...

    Text Solution

    |

  7. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  8. If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "unders...

    Text Solution

    |

  9. The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta...

    Text Solution

    |

  10. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  11. The integer n for which lim(x rarr 0) ((cos x-1) ( cos x - e^x))/x^n i...

    Text Solution

    |

  12. The value f underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....

    Text Solution

    |

  13. The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

    Text Solution

    |

  14. (lim)(xvec0)(sin(picos^2x))/(x^2) is equal to (1) pi/2 (2) 1 (3) ...

    Text Solution

    |

  15. If underset(x to 0)lim (x^(-3) sin 3x+ax^(-2) +b) exists and is equal ...

    Text Solution

    |

  16. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  17. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  18. lim ( x to pi//2 ) ( sec x - tan x ) is equal to

    Text Solution

    |

  19. underset(xto0)lim[(sin(sgn(x)))/((sgn(x)))], where [.] denotes the gre...

    Text Solution

    |

  20. If f(x)=|cos x|, then f' ((3pi)/(4)) is equal to

    Text Solution

    |