Home
Class 12
MATHS
The value f underset(x to pi/2)lim [1^(1...

The value f `underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....+n^(1//cos^(2) x)]^(cos^(2)x)` is

A

0

B

n

C

`oo`

D

`(n(n+1))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to evaluate the following limit: \[ \lim_{x \to \frac{\pi}{2}} \left[1^{\frac{1}{\cos^2 x}} + 2^{\frac{1}{\cos^2 x}} + \ldots + n^{\frac{1}{\cos^2 x}}\right]^{\cos^2 x} \] ### Step 1: Rewrite the limit expression First, we can rewrite the expression using the fact that \(\frac{1}{\cos^2 x} = \sec^2 x\): \[ \lim_{x \to \frac{\pi}{2}} \left[1^{\sec^2 x} + 2^{\sec^2 x} + \ldots + n^{\sec^2 x}\right]^{\cos^2 x} \] ### Step 2: Factor out \(n^{\sec^2 x}\) Next, we can factor out \(n^{\sec^2 x}\) from the sum: \[ = \lim_{x \to \frac{\pi}{2}} n^{\sec^2 x} \left[\left(\frac{1}{n}\right)^{\sec^2 x} + \left(\frac{2}{n}\right)^{\sec^2 x} + \ldots + 1^{\sec^2 x}\right]^{\cos^2 x} \] ### Step 3: Simplify the expression inside the limit Now, we can express the limit as: \[ = \lim_{x \to \frac{\pi}{2}} n^{\sec^2 x \cdot \cos^2 x} \left[\left(\frac{1}{n}\right)^{\sec^2 x} + \left(\frac{2}{n}\right)^{\sec^2 x} + \ldots + 1^{\sec^2 x}\right]^{\cos^2 x} \] Using the identity \(\sec^2 x \cdot \cos^2 x = 1\): \[ = \lim_{x \to \frac{\pi}{2}} n \left[\left(\frac{1}{n}\right)^{\sec^2 x} + \left(\frac{2}{n}\right)^{\sec^2 x} + \ldots + 1^{\sec^2 x}\right]^{\cos^2 x} \] ### Step 4: Evaluate the limit as \(x \to \frac{\pi}{2}\) As \(x\) approaches \(\frac{\pi}{2}\), \(\sec^2 x\) approaches infinity. Therefore, terms of the form \(\left(\frac{k}{n}\right)^{\sec^2 x}\) for \(k < n\) will approach 0, and the term for \(k = n\) will approach 1: \[ \lim_{x \to \frac{\pi}{2}} \left[\left(\frac{1}{n}\right)^{\sec^2 x} + \left(\frac{2}{n}\right)^{\sec^2 x} + \ldots + 1^{\sec^2 x}\right]^{\cos^2 x} = 1^{\cos^2 x} = 1 \] ### Step 5: Final result Thus, the limit simplifies to: \[ \lim_{x \to \frac{\pi}{2}} n \cdot 1 = n \] So, the final answer is: \[ \boxed{n} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

The vlaue of is lim_(xrarr(x)/(2))(1^((1)/(cos^(2)x))+2^((1)/(cos^(2)x))+…………..+10^((1)/(cos^(2)x))) equal to

underset( x rarr pi //2) ("Lim") ( 2 ^(cos x) - 1)/( x ( x-pi //2))= is

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

Let f(x)=det[[sec^(2)x,1,1cos^(2)x,cos^(2)x,cos ec^(2)x1,cos^(2)x,cot^(2)x]], then

lim_(x rarr(pi)/(2))[1+(cos x)^(cos x)]^(2)= a.b.c. d.does not

DISHA PUBLICATION-LIMITS AND DERIVATIVES-Exercise -2 : Concept Applicator
  1. Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

    Text Solution

    |

  2. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  3. The value of lim(xto0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)),is

    Text Solution

    |

  4. If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and under...

    Text Solution

    |

  5. Evaluate underset(xto2)lim(x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Text Solution

    |

  6. underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is...

    Text Solution

    |

  7. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  8. If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "unders...

    Text Solution

    |

  9. The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta...

    Text Solution

    |

  10. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  11. The integer n for which lim(x rarr 0) ((cos x-1) ( cos x - e^x))/x^n i...

    Text Solution

    |

  12. The value f underset(x to pi/2)lim [1^(1//cos^(2)x)+2^(1//cos^(2) x)+....

    Text Solution

    |

  13. The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

    Text Solution

    |

  14. (lim)(xvec0)(sin(picos^2x))/(x^2) is equal to (1) pi/2 (2) 1 (3) ...

    Text Solution

    |

  15. If underset(x to 0)lim (x^(-3) sin 3x+ax^(-2) +b) exists and is equal ...

    Text Solution

    |

  16. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  17. For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1, f...

    Text Solution

    |

  18. lim ( x to pi//2 ) ( sec x - tan x ) is equal to

    Text Solution

    |

  19. underset(xto0)lim[(sin(sgn(x)))/((sgn(x)))], where [.] denotes the gre...

    Text Solution

    |

  20. If f(x)=|cos x|, then f' ((3pi)/(4)) is equal to

    Text Solution

    |