Home
Class 12
MATHS
If x=sqrt(2^(cosec^(-1t))) and y=sqrt(2^...

If `x=sqrt(2^(cosec^(-1_t)))` and `y=sqrt(2^(sec^(-1_t)))`` (|t|ge1)`then (dy)/(dx) is equal to.

A

y/x

B

`-y/x`

C

`-x/y`

D

x/y

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \frac{dy}{dx} \) given the equations for \( x \) and \( y \): 1. **Given:** \[ x = \sqrt{2^{\csc^{-1}(t)}} \] \[ y = \sqrt{2^{\sec^{-1}(t)}} \] 2. **Step 1: Differentiate \( x \) with respect to \( t \)** \[ x = \sqrt{2^{\csc^{-1}(t)}} = (2^{\csc^{-1}(t)})^{1/2} = 2^{\frac{1}{2} \csc^{-1}(t)} \] Using the chain rule: \[ \frac{dx}{dt} = \frac{1}{2} \cdot 2^{\frac{1}{2} \csc^{-1}(t)} \cdot \ln(2) \cdot \frac{d}{dt}(\csc^{-1}(t)) \] We know: \[ \frac{d}{dt}(\csc^{-1}(t)) = -\frac{1}{\sqrt{t^2 - 1}} \quad \text{for } |t| \geq 1 \] Thus: \[ \frac{dx}{dt} = \frac{1}{2} \cdot 2^{\frac{1}{2} \csc^{-1}(t)} \cdot \ln(2) \cdot \left(-\frac{1}{\sqrt{t^2 - 1}}\right) \] \[ \frac{dx}{dt} = -\frac{2^{\frac{1}{2} \csc^{-1}(t)} \ln(2)}{2 \sqrt{t^2 - 1}} \] 3. **Step 2: Differentiate \( y \) with respect to \( t \)** \[ y = \sqrt{2^{\sec^{-1}(t)}} = (2^{\sec^{-1}(t)})^{1/2} = 2^{\frac{1}{2} \sec^{-1}(t)} \] Using the chain rule: \[ \frac{dy}{dt} = \frac{1}{2} \cdot 2^{\frac{1}{2} \sec^{-1}(t)} \cdot \ln(2) \cdot \frac{d}{dt}(\sec^{-1}(t)) \] We know: \[ \frac{d}{dt}(\sec^{-1}(t)) = \frac{1}{\sqrt{t^2 - 1}} \quad \text{for } |t| \geq 1 \] Thus: \[ \frac{dy}{dt} = \frac{1}{2} \cdot 2^{\frac{1}{2} \sec^{-1}(t)} \cdot \ln(2) \cdot \frac{1}{\sqrt{t^2 - 1}} \] \[ \frac{dy}{dt} = \frac{2^{\frac{1}{2} \sec^{-1}(t)} \ln(2)}{2 \sqrt{t^2 - 1}} \] 4. **Step 3: Find \( \frac{dy}{dx} \)** Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the expressions we found: \[ \frac{dy}{dx} = \frac{\frac{2^{\frac{1}{2} \sec^{-1}(t)} \ln(2)}{2 \sqrt{t^2 - 1}}}{-\frac{2^{\frac{1}{2} \csc^{-1}(t)} \ln(2)}{2 \sqrt{t^2 - 1}}} \] The \( \ln(2) \) and \( 2 \sqrt{t^2 - 1} \) cancel out: \[ \frac{dy}{dx} = -\frac{2^{\frac{1}{2} \sec^{-1}(t)}}{2^{\frac{1}{2} \csc^{-1}(t)}} \] 5. **Final Result:** \[ \frac{dy}{dx} = -\frac{2^{\frac{1}{2} \sec^{-1}(t)}}{2^{\frac{1}{2} \csc^{-1}(t)}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-1 : Concept Builder(Topicwise)|65 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

For t in (0,1), let x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos-1)t), then 1+ ((dy)/(dx))^(2) equals :

If y = t^(2) + t - 1 " then " (dy)/(dx) is equal to

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

if sqrt(x^(2)+y^(2))=e^(t) where t=sin^(-1)((y)/(sqrt(x^(2)+y^(2)))) then (dy)/(dx) is equal to

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .

DISHA PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-Exercise-2 : Concept Applicator
  1. If x=sqrt(2^(cosec^(-1t))) and y=sqrt(2^(sec^(-1t))) (|t|ge1)then (dy)...

    Text Solution

    |

  2. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, t...

    Text Solution

    |

  3. The function f: R-{0} -> R given by f(x)=1/x-2/[e^2x-1] can be made co...

    Text Solution

    |

  4. Let f(x)=|[1,1,1] , [3-x,5-3x^2,3x^3-1] , [2x^2-1,3x^5-1,7x^8-1]| then...

    Text Solution

    |

  5. Find the value of a for which the following function is continuous ...

    Text Solution

    |

  6. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  7. If f(x) {: (=(8^(x) - 4^(x)-2^(x)+1)/(x^(2)) ", ...

    Text Solution

    |

  8. The function defined by f(x)={(((1)/(x^2+e^2-x))^(-1),xne2),(" "k"...

    Text Solution

    |

  9. In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0 , b =1/2 a...

    Text Solution

    |

  10. Leg f(x+y)=f(x)+f(y)fora l lx , y in R , If f(x)i scon t inuou sa tx=...

    Text Solution

    |

  11. Which of the following is true about f(x)={(((x-2))/(|x-2|)((x^2-1...

    Text Solution

    |

  12. Let f be a continuous function on R such that f (1/(4n))=sin e^n/(e^...

    Text Solution

    |

  13. if y=logx*e^((tanx+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  14. Find the values of aa n db if f(x)={a+sin^(-1)(x+b),xgeq1x ,x<1 is di...

    Text Solution

    |

  15. Which of the following functions is not differentiable at x=1?

    Text Solution

    |

  16. If f(x)=(x)/(1+x)+(x)/((x+1)(2x+1))+(x)/((2x+1)(3x+1))+…"to "infty,the...

    Text Solution

    |

  17. if f(x)=(x^2-4)|(x^3-6x^2+11x-6)|+x/(1+|x|)then set of points at which...

    Text Solution

    |

  18. Number of point where function f(x) defined as f:[0,2pi] rarrR,f(x)={{...

    Text Solution

    |

  19. If the function f(x)=[((x-2)^3)/a]sin(x-2)+acos(x-2),[dot] denotes the...

    Text Solution

    |

  20. If g is the inverse function of fa n df^(prime)(x)=sinx ,t h e ng^(pri...

    Text Solution

    |

  21. Which of the following function is not differentiable at x=0? f(x)=mi...

    Text Solution

    |