Home
Class 12
MATHS
If the Rolle's theorem holds for the fun...

If the Rolle's theorem holds for the function f(x) = `2x^(3)+ax^(2)+bx`in the interval [-1,1]for the point c=`1/2`,then the value of 2a+b is :

A

1

B

-1

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Verify the conditions of Rolle's Theorem According to Rolle's theorem, for the function \( f(x) = 2x^3 + ax^2 + bx \) to satisfy the theorem on the interval \([-1, 1]\), it must hold that: 1. \( f(-1) = f(1) \) 2. There exists at least one \( c \) in the interval \((-1, 1)\) such that \( f'(c) = 0 \). ### Step 2: Calculate \( f(1) \) and \( f(-1) \) First, we calculate \( f(1) \): \[ f(1) = 2(1)^3 + a(1)^2 + b(1) = 2 + a + b \] Next, we calculate \( f(-1) \): \[ f(-1) = 2(-1)^3 + a(-1)^2 + b(-1) = -2 + a - b \] ### Step 3: Set up the equation from the condition \( f(-1) = f(1) \) Setting \( f(1) \) equal to \( f(-1) \): \[ 2 + a + b = -2 + a - b \] ### Step 4: Simplify the equation Subtract \( a \) from both sides: \[ 2 + b = -2 - b \] Adding \( b \) to both sides gives: \[ 2 + 2b = -2 \] Now, solving for \( b \): \[ 2b = -2 - 2 \implies 2b = -4 \implies b = -2 \] ### Step 5: Use \( c = \frac{1}{2} \) to find \( a \) Now we need to find \( a \) using the derivative \( f'(x) \): \[ f'(x) = 6x^2 + 2ax + b \] Substituting \( c = \frac{1}{2} \): \[ f'\left(\frac{1}{2}\right) = 6\left(\frac{1}{2}\right)^2 + 2a\left(\frac{1}{2}\right) + b = 0 \] Calculating \( f'\left(\frac{1}{2}\right) \): \[ f'\left(\frac{1}{2}\right) = 6 \cdot \frac{1}{4} + a + b = \frac{3}{2} + a + b \] Substituting \( b = -2 \): \[ \frac{3}{2} + a - 2 = 0 \] This simplifies to: \[ \frac{3}{2} + a - \frac{4}{2} = 0 \implies a - \frac{1}{2} = 0 \implies a = \frac{1}{2} \] ### Step 6: Calculate \( 2a + b \) Now we can find \( 2a + b \): \[ 2a + b = 2\left(\frac{1}{2}\right) + (-2) = 1 - 2 = -1 \] ### Final Answer Thus, the value of \( 2a + b \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-1 : Concept Builder(Topicwise)|65 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

If Rolle's theorem holds for the function f(x) = 2x^(3) + ax^(2) + bx in the interval [-1,1] for the point c= (1)/(2) , then the value of 2a +b is

If Rolle's theorem holds for the function f(x)=2x^(3)+bx^(2)+cx On the interval [-1,1] at the point K=(1)/(2) then the value of 9b-(c)/(47)= ............

Verify the Rolle's theorem for the function f(x) = x^(2) - 3x+2 on the interval [1,2].

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Verify Rolle's theorem for the function f(x) = x^(3) -6x^(2) + 11x-6 in interval [1,3]

Verify Rolle's theorem for the function f(x) = x^(2) +x-6 in the interval [-3,2]

Verify Rolle's theorem for the function f(x) = x^(2) in the interval [-1,1] .

Verify the Rolle's theorem for the function f(x) = x^(2) in [-1,1]

If Rolle's theorem holds for the function f(x) =x^(3) + bx^(2) +ax -6 for x in [1,3] , then a+4b=

Verify Rolle's theorem for the function f(x) = {log (x^(2) +2) - log 3 } in the interval [-1,1] .

DISHA PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-Exercise-2 : Concept Applicator
  1. If the Rolle's theorem holds for the function f(x) = 2x^(3)+ax^(2)+bxi...

    Text Solution

    |

  2. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, t...

    Text Solution

    |

  3. The function f: R-{0} -> R given by f(x)=1/x-2/[e^2x-1] can be made co...

    Text Solution

    |

  4. Let f(x)=|[1,1,1] , [3-x,5-3x^2,3x^3-1] , [2x^2-1,3x^5-1,7x^8-1]| then...

    Text Solution

    |

  5. Find the value of a for which the following function is continuous ...

    Text Solution

    |

  6. The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x...

    Text Solution

    |

  7. If f(x) {: (=(8^(x) - 4^(x)-2^(x)+1)/(x^(2)) ", ...

    Text Solution

    |

  8. The function defined by f(x)={(((1)/(x^2+e^2-x))^(-1),xne2),(" "k"...

    Text Solution

    |

  9. In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0 , b =1/2 a...

    Text Solution

    |

  10. Leg f(x+y)=f(x)+f(y)fora l lx , y in R , If f(x)i scon t inuou sa tx=...

    Text Solution

    |

  11. Which of the following is true about f(x)={(((x-2))/(|x-2|)((x^2-1...

    Text Solution

    |

  12. Let f be a continuous function on R such that f (1/(4n))=sin e^n/(e^...

    Text Solution

    |

  13. if y=logx*e^((tanx+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  14. Find the values of aa n db if f(x)={a+sin^(-1)(x+b),xgeq1x ,x<1 is di...

    Text Solution

    |

  15. Which of the following functions is not differentiable at x=1?

    Text Solution

    |

  16. If f(x)=(x)/(1+x)+(x)/((x+1)(2x+1))+(x)/((2x+1)(3x+1))+…"to "infty,the...

    Text Solution

    |

  17. if f(x)=(x^2-4)|(x^3-6x^2+11x-6)|+x/(1+|x|)then set of points at which...

    Text Solution

    |

  18. Number of point where function f(x) defined as f:[0,2pi] rarrR,f(x)={{...

    Text Solution

    |

  19. If the function f(x)=[((x-2)^3)/a]sin(x-2)+acos(x-2),[dot] denotes the...

    Text Solution

    |

  20. If g is the inverse function of fa n df^(prime)(x)=sinx ,t h e ng^(pri...

    Text Solution

    |

  21. Which of the following function is not differentiable at x=0? f(x)=mi...

    Text Solution

    |