Home
Class 12
MATHS
If f(x)={(-x^2",",when xle0),(5x-4",","w...

If `f(x)={(-x^2",",when xle0),(5x-4",","when "0 lt x le 1),(4x^2-3x",","when "1 lt x lt 2),(3x+4",",when xge2):}` ,then

A

f(x) is continuous at x = 0

B

f(x) is continuous at x = 2

C

f(x) is discontinuous at x = 1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the points of continuity or discontinuity for the piecewise function \[ f(x) = \begin{cases} -x^2 & \text{when } x \leq 0 \\ 5x - 4 & \text{when } 0 < x \leq 1 \\ 4x^2 - 3x & \text{when } 1 < x < 2 \\ 3x + 4 & \text{when } x \geq 2 \end{cases} \] we will check the continuity at the points where the definition of the function changes, which are \(x = 0\), \(x = 1\), and \(x = 2\). ### Step 1: Check continuity at \(x = 0\) 1. **Find \(f(0)\)**: \[ f(0) = -0^2 = 0 \] 2. **Find \(\lim_{x \to 0^-} f(x)\)**: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-x^2) = 0 \] 3. **Find \(\lim_{x \to 0^+} f(x)\)**: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (5x - 4) = 5(0) - 4 = -4 \] 4. **Compare the limits and the function value**: \[ \lim_{x \to 0^-} f(x) = 0, \quad \lim_{x \to 0^+} f(x) = -4, \quad f(0) = 0 \] Since \(\lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x)\), the function is discontinuous at \(x = 0\). ### Step 2: Check continuity at \(x = 1\) 1. **Find \(f(1)\)**: \[ f(1) = 5(1) - 4 = 1 \] 2. **Find \(\lim_{x \to 1^-} f(x)\)**: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (5x - 4) = 5(1) - 4 = 1 \] 3. **Find \(\lim_{x \to 1^+} f(x)\)**: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4x^2 - 3x) = 4(1)^2 - 3(1) = 4 - 3 = 1 \] 4. **Compare the limits and the function value**: \[ \lim_{x \to 1^-} f(x) = 1, \quad \lim_{x \to 1^+} f(x) = 1, \quad f(1) = 1 \] Since all values are equal, the function is continuous at \(x = 1\). ### Step 3: Check continuity at \(x = 2\) 1. **Find \(f(2)\)**: \[ f(2) = 3(2) + 4 = 6 + 4 = 10 \] 2. **Find \(\lim_{x \to 2^-} f(x)\)**: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (4x^2 - 3x) = 4(2)^2 - 3(2) = 16 - 6 = 10 \] 3. **Find \(\lim_{x \to 2^+} f(x)\)**: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3x + 4) = 3(2) + 4 = 6 + 4 = 10 \] 4. **Compare the limits and the function value**: \[ \lim_{x \to 2^-} f(x) = 10, \quad \lim_{x \to 2^+} f(x) = 10, \quad f(2) = 10 \] Since all values are equal, the function is continuous at \(x = 2\). ### Summary of Continuity - The function is discontinuous at \(x = 0\). - The function is continuous at \(x = 1\). - The function is continuous at \(x = 2\). ### Final Answer The function is discontinuous at \(x = 0\) and continuous at \(x = 1\) and \(x = 2\).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Draw the graph of the function f(x)={{:(x^(2)",", " when ", xlt0),(x",", " when " , 0le x le1),(1//x",", " when " , 1 le x lt oo.):}

If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", if " 0 lt x le 1 ),(= 4x^(2)-3x", if " 1 lt x le 2 ):} then f is

If f(x) = {(1+x^(2),",", "when"0 le x lt 1),(1-x,",","when"x gt 1):} , then

If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is

If f(x) = {{:(-x, " when "x lt 0),(x^(2), " when "0 le x le 1),(x^(3) -x+1, " when " x gt 1):} then f is differentiable at

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

If f(x)={{:(2x+3",","when",x lt 0),(0",","when",x = 0),(x^(2)+3",","when",x gt 0):} Discuss the continuity.

If f(x) = {(1, ",", "when" 0 lt x le (3pi)/4),(2(sin) 2/9x, ",", "when" (3pi)/4 lt x lt pi):} , then

DISHA PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-Exercise-1 : Concept Builder(Topicwise)
  1. If f(x)=[(8^x-4^x-2^x+1^2)/(x^2\ ),\ x >0e^xsinx+4x+k ln4,\ xlt=0 is c...

    Text Solution

    |

  2. The number of points at which the function f(x)=1/(log) |x| is discont...

    Text Solution

    |

  3. If f(x)={(-x^2",",when xle0),(5x-4",","when "0 lt x le 1),(4x^2-3x",",...

    Text Solution

    |

  4. The points of discontinuity of the function lim(n->oo) (((2 sin x )^(2...

    Text Solution

    |

  5. Let f(x)=[x^3 - 3], where [.] is the greatest integer function, then t...

    Text Solution

    |

  6. If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):} , then

    Text Solution

    |

  7. The number of points at which the function f(x) = 1/(x-[x]) ([.] denot...

    Text Solution

    |

  8. If f(x)={(sin x;x rational) (cos x;x is irrational) then the function ...

    Text Solution

    |

  9. If f(x) = {(1, ",", "when" 0 lt x le (3pi)/4),(2(sin) 2/9x, ",", "when...

    Text Solution

    |

  10. If f(x) = sgn (x) and g (x) = (1-x^2),then the number of points of dis...

    Text Solution

    |

  11. If f(x)={(x","xle1,),(x^2+bx+c",",xgt1):} then find the values of b an...

    Text Solution

    |

  12. Let f(x) = |sin x| .Then

    Text Solution

    |

  13. f(x)=maximum {2sinx,1-cosx} is not differentiable when x is equal to

    Text Solution

    |

  14. Let f : R to R be such that f (1) = 3 and f'(1) = 6. Then, unders...

    Text Solution

    |

  15. If f (x) = ae^(|x|)+b|x|^(2); a","b epsilon R and f(x) is differentia...

    Text Solution

    |

  16. Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):}, then lim(x rar...

    Text Solution

    |

  17. If f(x)={(sqrtx(1+xsin""1/x)","xgt0,),(-sqrt-x(1+xsin""1/x)","xlt0,),(...

    Text Solution

    |

  18. The left hand derivative of f(x)=[x]sin(pix) at x = k, k is an intege...

    Text Solution

    |

  19. Let f : R to R be a function defined by f(x) = max. {x, x^(3)}. The s...

    Text Solution

    |

  20. If f(x)={(([x]-1)/(x-1)",",xne1),(0" ,",x=1):} then f(x) is

    Text Solution

    |