Home
Class 12
MATHS
f(x)=maximum {2sinx,1-cosx} is not diffe...

f(x)=maximum {2sinx,1-cosx} is not differentiable when x is equal to

A

1

B

-1

C

0

D

`pi - cos^(-1) (3/5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the points where the function \( f(x) = \max\{2\sin x, 1 - \cos x\} \) is not differentiable, we need to analyze the two functions involved and determine where they intersect. ### Step 1: Identify the functions and their domains We have two functions: 1. \( g_1(x) = 2\sin x \) 2. \( g_2(x) = 1 - \cos x \) We will analyze these functions over the interval \( [0, \pi] \). ### Step 2: Find the intersection points To find where \( f(x) \) is not differentiable, we need to find the points where \( g_1(x) = g_2(x) \). Set the two functions equal to each other: \[ 2\sin x = 1 - \cos x \] ### Step 3: Rearrange the equation Rearranging gives: \[ 2\sin x + \cos x = 1 \] ### Step 4: Use trigonometric identities We can use the identity \( \cos x = 1 - 2\sin^2\left(\frac{x}{2}\right) \) to rewrite the equation: \[ 2\sin x + (1 - 2\sin^2\left(\frac{x}{2}\right)) = 1 \] This simplifies to: \[ 2\sin x + 1 - 2\sin^2\left(\frac{x}{2}\right) = 1 \] Thus, \[ 2\sin x = 2\sin^2\left(\frac{x}{2}\right) \] ### Step 5: Solve for \( \sin x \) Using the double angle formula \( \sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \): \[ 2(2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = 2\sin^2\left(\frac{x}{2}\right) \] Dividing both sides by 2 (assuming \( \sin\left(\frac{x}{2}\right) \neq 0 \)): \[ 2\cos\left(\frac{x}{2}\right) = \sin\left(\frac{x}{2}\right) \] ### Step 6: Use the tangent function This can be rewritten as: \[ \tan\left(\frac{x}{2}\right) = 2 \] ### Step 7: Solve for \( x \) Taking the arctangent gives: \[ \frac{x}{2} = \tan^{-1}(2) \] Thus, \[ x = 2\tan^{-1}(2) \] ### Step 8: Find the value of \( x \) To find the exact value of \( x \), we can also express it in terms of cosine: \[ \cos x = 1 - \tan^2\left(\frac{x}{2}\right) / (1 + \tan^2\left(\frac{x}{2}\right)) \] Substituting \( \tan\left(\frac{x}{2}\right) = 2 \): \[ \cos x = 1 - \frac{4}{5} = -\frac{3}{5} \] ### Step 9: Find \( x \) Thus, we have: \[ x = \pi - \cos^{-1}\left(-\frac{3}{5}\right) \] This is the point where \( f(x) \) is not differentiable. ### Final Answer The function \( f(x) \) is not differentiable at: \[ x = \pi - \cos^{-1}\left(\frac{3}{5}\right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

If inte^(x)((1-sinx)/(1-cosx))dx=f(x)+ Constant, then f(x) is equal to

If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

Maximum value of f(x)=sinx+cosx is :

Range of the function f(x)=|sinx|cosx|+cosx|sinx|| is [a,b] then (a+b) is equal to

int(x+sinx)/(1+cosx)\ dx is equal to

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

DISHA PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-Exercise-1 : Concept Builder(Topicwise)
  1. If f(x)={(x","xle1,),(x^2+bx+c",",xgt1):} then find the values of b an...

    Text Solution

    |

  2. Let f(x) = |sin x| .Then

    Text Solution

    |

  3. f(x)=maximum {2sinx,1-cosx} is not differentiable when x is equal to

    Text Solution

    |

  4. Let f : R to R be such that f (1) = 3 and f'(1) = 6. Then, unders...

    Text Solution

    |

  5. If f (x) = ae^(|x|)+b|x|^(2); a","b epsilon R and f(x) is differentia...

    Text Solution

    |

  6. Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):}, then lim(x rar...

    Text Solution

    |

  7. If f(x)={(sqrtx(1+xsin""1/x)","xgt0,),(-sqrt-x(1+xsin""1/x)","xlt0,),(...

    Text Solution

    |

  8. The left hand derivative of f(x)=[x]sin(pix) at x = k, k is an intege...

    Text Solution

    |

  9. Let f : R to R be a function defined by f(x) = max. {x, x^(3)}. The s...

    Text Solution

    |

  10. If f(x)={(([x]-1)/(x-1)",",xne1),(0" ,",x=1):} then f(x) is

    Text Solution

    |

  11. If f(x) = {{:( e^(x) +ax ,"for " x lt 0 ),( b(x-1) ^(2) ,"for " xge 0...

    Text Solution

    |

  12. If f(x)=lim(n->oo)(tanpix^2+(x+1)^nsinx)/(x^2+(x+1)^n) then

    Text Solution

    |

  13. If f(x)=root(3)((x^4)/|x|) ,x ne 0 and f(0)=0 is:

    Text Solution

    |

  14. Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = ...

    Text Solution

    |

  15. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x)

    Text Solution

    |

  16. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  17. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |

  18. If y=((a-x)sqrt(a-x)-(b-x)sqrt(x-b))/a ,t h e n(dy)/(dx) wherever it...

    Text Solution

    |

  19. If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), then (dy)/(dx) is equal...

    Text Solution

    |

  20. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |