Home
Class 12
MATHS
If f (x) = ae^(|x|)+b|x|^(2); a","b eps...

If f (x) = `ae^(|x|)+b|x|^(2); a","b epsilon R` and f(x) is differentiable at x=0.Then ,a and b are

A

a= 0,`b epsilon R`

B

a=1,b=2

C

b=0,`a epsilon R`

D

a=4 , b=5

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \( f(x) = ae^{|x|} + b|x|^2 \) is differentiable at \( x = 0 \), we will follow these steps: ### Step 1: Define the function for positive and negative \( x \) For \( x \geq 0 \): \[ f(x) = ae^x + bx^2 \] For \( x < 0 \): \[ f(x) = ae^{-x} + b(-x)^2 = ae^{-x} + bx^2 \] ### Step 2: Calculate \( f(0) \) To find \( f(0) \): \[ f(0) = ae^{0} + b(0)^2 = a \] ### Step 3: Calculate the right-hand derivative at \( x = 0 \) Using the definition of the derivative: \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h} \] Substituting \( f(h) \): \[ f'(0^+) = \lim_{h \to 0^+} \frac{(ae^h + bh^2) - a}{h} \] This simplifies to: \[ = \lim_{h \to 0^+} \frac{a(e^h - 1) + bh^2}{h} \] Using the fact that \( \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \): \[ = \lim_{h \to 0^+} \left( a + bh \right) = a \] ### Step 4: Calculate the left-hand derivative at \( x = 0 \) Using the definition of the derivative: \[ f'(0^-) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h} \] Substituting \( f(h) \): \[ f'(0^-) = \lim_{h \to 0^-} \frac{(ae^{-h} + bh^2) - a}{h} \] This simplifies to: \[ = \lim_{h \to 0^-} \frac{a(e^{-h} - 1) + bh^2}{h} \] Using the fact that \( \lim_{h \to 0} \frac{e^{-h} - 1}{h} = -1 \): \[ = \lim_{h \to 0^-} \left( -a + bh \right) = -a \] ### Step 5: Set the derivatives equal for differentiability For \( f(x) \) to be differentiable at \( x = 0 \), the left-hand and right-hand derivatives must be equal: \[ f'(0^+) = f'(0^-) \implies a = -a \] This implies: \[ 2a = 0 \implies a = 0 \] ### Step 6: Determine the value of \( b \) Since there are no conditions on \( b \), it can be any real number. Thus, \( b \in \mathbb{R} \). ### Final Result The values of \( a \) and \( b \) are: \[ a = 0, \quad b \in \mathbb{R} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

If f (x) ae^(|x|)+b |x|^(2) ,a ,b in R and f(x) is differentiable at x =0 ,then

If f(x)=a|sin x|+be^(|x|)+c|x|^(3) and if f(x) is differentiable at x=0, then a=b=c=0( b) a=0,quad b=0;quad c in R(c)b=c=0,quad a in R(d)c=0,quad a=0,quad b in R

Let f(x)=a+b|x|+c|x|^(4), where a,b and c are real constants.Then,f(x) is differentiable at x=0, if a=0 (b) b=0( c) c=0(d) none of these

Let f(x)=a+b|x|+c|x|^(4), where a,b, and c are real constants.Then,f(x) is differentiable at x=0, if a=0( b) b=0 (c) c=0( d) none of these

If f(x)={ax^(2)+b,x 1;b!=0, then f(x) is continuous and differentiable at x=1 if

Let f : R rarr R satisfying |f(x)|le x^(2), AA x in R , then show that f(x) is differentiable at x = 0.

If f(x)= int_(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable function and f(g(x)) is differentiable at x=a , then

A function f:R rarr R satisfies the equation f(x+y)=f(x)f(y) for allx,y in R and f(x)!=0 for all x in R .If f(x) is differentiable at x=0 .If f(x)=2, then prove that f'(x)=2f(x) .

DISHA PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-Exercise-1 : Concept Builder(Topicwise)
  1. f(x)=maximum {2sinx,1-cosx} is not differentiable when x is equal to

    Text Solution

    |

  2. Let f : R to R be such that f (1) = 3 and f'(1) = 6. Then, unders...

    Text Solution

    |

  3. If f (x) = ae^(|x|)+b|x|^(2); a","b epsilon R and f(x) is differentia...

    Text Solution

    |

  4. Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):}, then lim(x rar...

    Text Solution

    |

  5. If f(x)={(sqrtx(1+xsin""1/x)","xgt0,),(-sqrt-x(1+xsin""1/x)","xlt0,),(...

    Text Solution

    |

  6. The left hand derivative of f(x)=[x]sin(pix) at x = k, k is an intege...

    Text Solution

    |

  7. Let f : R to R be a function defined by f(x) = max. {x, x^(3)}. The s...

    Text Solution

    |

  8. If f(x)={(([x]-1)/(x-1)",",xne1),(0" ,",x=1):} then f(x) is

    Text Solution

    |

  9. If f(x) = {{:( e^(x) +ax ,"for " x lt 0 ),( b(x-1) ^(2) ,"for " xge 0...

    Text Solution

    |

  10. If f(x)=lim(n->oo)(tanpix^2+(x+1)^nsinx)/(x^2+(x+1)^n) then

    Text Solution

    |

  11. If f(x)=root(3)((x^4)/|x|) ,x ne 0 and f(0)=0 is:

    Text Solution

    |

  12. Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = ...

    Text Solution

    |

  13. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x)

    Text Solution

    |

  14. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  15. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |

  16. If y=((a-x)sqrt(a-x)-(b-x)sqrt(x-b))/a ,t h e n(dy)/(dx) wherever it...

    Text Solution

    |

  17. If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), then (dy)/(dx) is equal...

    Text Solution

    |

  18. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  19. Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+...

    Text Solution

    |

  20. If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in ...

    Text Solution

    |