Home
Class 12
MATHS
If f(x)=root(3)((x^4)/|x|) ,x ne 0 and f...

If `f(x)=root(3)((x^4)/|x|)` ,x `ne` 0 and f(0)=0 is:

A

continuous for all x but not differentiable for any x

B

continuous and differentiable for all x

C

continuous for all x and differentiable for all `x ne 0`

D

continuous and differentiable for all `x ne 0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity and differentiability of the function \( f(x) = \sqrt[3]{\frac{x^4}{|x|}} \) for \( x \neq 0 \) and \( f(0) = 0 \), we will follow these steps: ### Step 1: Rewrite the Function The function can be rewritten based on the sign of \( x \): - For \( x > 0 \): \[ f(x) = \sqrt[3]{\frac{x^4}{x}} = \sqrt[3]{x^3} = x \] - For \( x < 0 \): \[ f(x) = \sqrt[3]{\frac{x^4}{-x}} = \sqrt[3]{-x^3} = -x \] Thus, we can express the function as: \[ f(x) = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 2: Check Continuity at \( x = 0 \) To check for continuity at \( x = 0 \), we need to verify: \[ \lim_{x \to 0} f(x) = f(0) \] Calculating the left-hand limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -x = 0 \] Calculating the right-hand limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0 \] Since both limits equal \( f(0) = 0 \), we conclude that: \[ \lim_{x \to 0} f(x) = f(0) \] Thus, \( f(x) \) is continuous at \( x = 0 \). ### Step 3: Check Differentiability at \( x = 0 \) To check for differentiability at \( x = 0 \), we need to compute the left-hand and right-hand derivatives. **Left-hand derivative**: \[ f'(0^-) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h - 0} = \lim_{h \to 0^-} \frac{-h - 0}{h} = \lim_{h \to 0^-} -1 = -1 \] **Right-hand derivative**: \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h - 0} = \lim_{h \to 0^+} \frac{h - 0}{h} = \lim_{h \to 0^+} 1 = 1 \] Since the left-hand derivative \( f'(0^-) = -1 \) and the right-hand derivative \( f'(0^+) = 1 \) are not equal, \( f(x) \) is not differentiable at \( x = 0 \). ### Conclusion The function \( f(x) \) is continuous everywhere but not differentiable at \( x = 0 \). Therefore, the final answer is: - Continuous for all \( x \) - Differentiable for all \( x \neq 0 \)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)+2f((1)/(x))=3x, x ne 0 and S={x in R: f(x) = f(-x)}, " then " S

DISHA PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-Exercise-1 : Concept Builder(Topicwise)
  1. If f(x) = {{:( e^(x) +ax ,"for " x lt 0 ),( b(x-1) ^(2) ,"for " xge 0...

    Text Solution

    |

  2. If f(x)=lim(n->oo)(tanpix^2+(x+1)^nsinx)/(x^2+(x+1)^n) then

    Text Solution

    |

  3. If f(x)=root(3)((x^4)/|x|) ,x ne 0 and f(0)=0 is:

    Text Solution

    |

  4. Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = ...

    Text Solution

    |

  5. If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, then at x = 0, f(x)

    Text Solution

    |

  6. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  7. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |

  8. If y=((a-x)sqrt(a-x)-(b-x)sqrt(x-b))/a ,t h e n(dy)/(dx) wherever it...

    Text Solution

    |

  9. If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), then (dy)/(dx) is equal...

    Text Solution

    |

  10. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  11. Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+...

    Text Solution

    |

  12. If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in ...

    Text Solution

    |

  13. The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1...

    Text Solution

    |

  14. If x = sint cos2t and y = cost sin2t , then at t = pi/4, the value of ...

    Text Solution

    |

  15. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  16. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  17. If x^y = e^(x-y) " then " dy/dx ?

    Text Solution

    |

  18. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  19. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  20. If f(x)=x^4tan(x^3)-x1n(1+x^2), then the value of (d^4(f(x)))/(dx^4) ...

    Text Solution

    |