Home
Class 12
MATHS
If x = sint cos2t and y = cost sin2t , t...

If `x = sint cos2t` and `y = cost sin2t` , then at `t = pi/4`, the value of `dy/dx` is equal to:

A

-2

B

2

C

`1/2`

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) for the given parametric equations \(x = \sin t \cos 2t\) and \(y = \cos t \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) Given: \[ y = \cos t \sin 2t \] Using the product rule: \[ \frac{dy}{dt} = \frac{d}{dt}(\cos t) \cdot \sin 2t + \cos t \cdot \frac{d}{dt}(\sin 2t) \] Calculating each derivative: - \(\frac{d}{dt}(\cos t) = -\sin t\) - \(\frac{d}{dt}(\sin 2t) = 2\cos 2t\) Thus, \[ \frac{dy}{dt} = -\sin t \sin 2t + \cos t \cdot 2\cos 2t \] ### Step 2: Differentiate \(x\) with respect to \(t\) Given: \[ x = \sin t \cos 2t \] Using the product rule: \[ \frac{dx}{dt} = \frac{d}{dt}(\sin t) \cdot \cos 2t + \sin t \cdot \frac{d}{dt}(\cos 2t) \] Calculating each derivative: - \(\frac{d}{dt}(\sin t) = \cos t\) - \(\frac{d}{dt}(\cos 2t) = -2\sin 2t\) Thus, \[ \frac{dx}{dt} = \cos t \cos 2t - 2\sin t \sin 2t \] ### Step 3: Evaluate \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) at \(t = \frac{\pi}{4}\) Substituting \(t = \frac{\pi}{4}\): - \(\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}\) - \(\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}\) - \(\sin \frac{\pi}{2} = 1\) - \(\cos \frac{\pi}{2} = 0\) Calculating \(\frac{dy}{dt}\): \[ \frac{dy}{dt} = -\sin\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{4}\right) \cdot 2\cos\left(\frac{\pi}{2}\right) \] \[ = -\frac{1}{\sqrt{2}} \cdot 1 + \frac{1}{\sqrt{2}} \cdot 2 \cdot 0 = -\frac{1}{\sqrt{2}} \] Calculating \(\frac{dx}{dt}\): \[ \frac{dx}{dt} = \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{2}\right) - 2\sin\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{2}\right) \] \[ = \frac{1}{\sqrt{2}} \cdot 0 - 2 \cdot \frac{1}{\sqrt{2}} \cdot 1 = -\frac{2}{\sqrt{2}} = -\sqrt{2} \] ### Step 4: Calculate \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values: \[ \frac{dy}{dx} = \frac{-\frac{1}{\sqrt{2}}}{-\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

If x=sin tcos 2t,y= cos tsin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If t(1+x^(2))=x and x^(2)+t^(2)=y, then at x=2 the value of (dy)/(dx) is equal to

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)

If y=sin t -cos t and x=sin t+cost , then (dy)/(dx) at t=(pi)/(6) is :

If x=sint and y=cos2t , then (dy)/(dx) =

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

DISHA PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-Exercise-1 : Concept Builder(Topicwise)
  1. If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in ...

    Text Solution

    |

  2. The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1...

    Text Solution

    |

  3. If x = sint cos2t and y = cost sin2t , then at t = pi/4, the value of ...

    Text Solution

    |

  4. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  5. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  6. If x^y = e^(x-y) " then " dy/dx ?

    Text Solution

    |

  7. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  8. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  9. If f(x)=x^4tan(x^3)-x1n(1+x^2), then the value of (d^4(f(x)))/(dx^4) ...

    Text Solution

    |

  10. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  11. If x = exp {tan^(-1)((y-x^2)/(x^2))} then dy/dx equals

    Text Solution

    |

  12. If y = log^nx, where log^n means log log log… (repeated n time), the...

    Text Solution

    |

  13. If x=e^(y+e^(y^(+..."to"00))),xgt0,"then"(dy)/(dx)

    Text Solution

    |

  14. d/(dx)[log{e^x((x-2)/(x+2))^(3//4)}] equals (x^2-1)/(x^2-4) (b) 1 (c) ...

    Text Solution

    |

  15. If : y=(1)/(x)," then: "(dy)/(sqrt(1+y^(4)))+(dx)/(sqrt(1+x^(4)))=

    Text Solution

    |

  16. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ . . .oo))), then (dy)/(dx) is equa...

    Text Solution

    |

  17. The equation x log x = 3-x has, in the interval (1,3) :

    Text Solution

    |

  18. In [0,1] Lagranges Mean Value theorem in NOT applicable to f(x)={1/2-x...

    Text Solution

    |

  19. Rolle's theorem hold for the function f(x)=x^(3)+bx^(2)+cx,1 le x le2 ...

    Text Solution

    |

  20. The value of x in the interval [4,9] at which the function f(x) = sqrt...

    Text Solution

    |