Home
Class 12
MATHS
int root 3 (x) root 7 (1+ root3 (x ^(4))...

`int root 3 (x) root 7 (1+ root3 (x ^(4)))` dx is equal to

A

`(21)/(32) (1+ root 3 (x ^(4))) ^(8//7)+C`

B

`(32)/(21) (1 + root 3 ( x ^(4))) ^(8//7) +C`

C

`(7)/(32) (1 + root 3 ( x ^(4))) ^(8//7) +C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^{\frac{1}{3}} \sqrt[7]{1 + \sqrt[3]{x^4}} \, dx \), we will follow these steps: ### Step 1: Substitute \( y = \sqrt[3]{x} \) Let \( y = \sqrt[3]{x} \). Then, we have: \[ x = y^3 \quad \text{and} \quad dx = 3y^2 \, dy \] ### Step 2: Rewrite the integral in terms of \( y \) Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int (y^3)^{\frac{1}{3}} \sqrt[7]{1 + \sqrt[3]{(y^3)^4}} \cdot 3y^2 \, dy \] This simplifies to: \[ I = \int y \sqrt[7]{1 + y^4} \cdot 3y^2 \, dy = 3 \int y^3 \sqrt[7]{1 + y^4} \, dy \] ### Step 3: Simplify the integral Now, we can write: \[ I = 3 \int y^3 (1 + y^4)^{\frac{1}{7}} \, dy \] ### Step 4: Use substitution for integration Let \( u = 1 + y^4 \). Then, we differentiate: \[ du = 4y^3 \, dy \quad \Rightarrow \quad dy = \frac{du}{4y^3} \] Substituting \( y^3 \) in terms of \( u \): \[ I = 3 \int y^3 u^{\frac{1}{7}} \cdot \frac{du}{4y^3} = \frac{3}{4} \int u^{\frac{1}{7}} \, du \] ### Step 5: Integrate with respect to \( u \) Now, we can integrate: \[ \int u^{\frac{1}{7}} \, du = \frac{u^{\frac{1}{7} + 1}}{\frac{1}{7} + 1} + C = \frac{u^{\frac{8}{7}}}{\frac{8}{7}} + C = \frac{7}{8} u^{\frac{8}{7}} + C \] Thus, \[ I = \frac{3}{4} \cdot \frac{7}{8} u^{\frac{8}{7}} + C = \frac{21}{32} u^{\frac{8}{7}} + C \] ### Step 6: Substitute back for \( u \) Recall that \( u = 1 + y^4 \) and \( y = \sqrt[3]{x} \): \[ I = \frac{21}{32} (1 + (\sqrt[3]{x})^4)^{\frac{8}{7}} + C = \frac{21}{32} (1 + x^{\frac{4}{3}})^{\frac{8}{7}} + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{21}{32} (1 + x^{\frac{4}{3}})^{\frac{8}{7}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int(root3(x))(root5(1+root3(x^(4))))dx is equal to

int root(3)(x)dx

int(root(3)(x))(root(5)(1+root(3)(x^(4))))dx

int root(3)(x^(2))dx

int(1+x)/(1+root(3)(x))dx is equal to

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int(1)/(root(3)(x^(2)))dx

int(x+root(3)(x^(2))+root(6)(x))/(x(1+root(3)(x)))dx is equal to (i)(3)/(2)x(1+root(3)(x))(3)/(2)x^((2)/(3))+6tan^(-1)x^(6)+C( iii) (3)/(2)x^((2)/(3))+6tan^(-1)x^((1)/(6))+C( iv) (2)/(3)x^((2)/(3))+5tan^(-1)x^(6)+C