Home
Class 12
MATHS
int (x ^(1//2))/( x ^(1//2) - x ^(1//3))...

`int (x ^(1//2))/( x ^(1//2) - x ^(1//3)) dx` is equal to

A

`6 [ (x)/(6) +(x ^((5)/(6)))/( 5 )+ (x ^((2)/(3)))/( 4 ) + (x ^((1)/(2)))/( 3)+ (x ^((1)/(3)))/(2) + x ^((1)/(6))+ log (x ^((1)/(6))-1)]+C`

B

`6 [ (x)/(6) -(x ^((5)/(6)))/( 5 )+ (x ^((2)/(3)))/( 4 ) - (x ^((1)/(2)))/( 3)+ (x ^((1)/(3)))/(2) + x ^((1)/(6))+ log (x ^((1)/(6))-1)]+C`

C

`6 [ (x)/(6) +(x ^((5)/(6)))/( 5 )- (x ^((2)/(3)))/( 4 ) + (x ^((1)/(2)))/( 3)- (x ^((1)/(3)))/(2) + x ^((1)/(6))+ log (x ^((1)/(6))-1)]+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^{1/2}}{x^{1/2} - x^{1/3}} \, dx \), we will follow these steps: ### Step 1: Simplify the Integral First, we rewrite the integral: \[ \int \frac{x^{1/2}}{x^{1/2} - x^{1/3}} \, dx \] We can factor out the smallest power in the denominator, which is \( x^{1/3} \): \[ = \int \frac{x^{1/2}}{x^{1/3}(x^{1/6} - 1)} \, dx \] This simplifies to: \[ = \int \frac{x^{1/6}}{x^{1/6} - 1} \, dx \] ### Step 2: Substitution Let \( t = x^{1/6} \). Then, we differentiate: \[ dt = \frac{1}{6} x^{-5/6} \, dx \quad \Rightarrow \quad dx = 6 t^5 \, dt \] Now, substituting \( x = t^6 \) into the integral gives: \[ = \int \frac{t^3}{t^3 - 1} \cdot 6 t^5 \, dt = 6 \int \frac{t^8}{t^3 - 1} \, dt \] ### Step 3: Long Division Next, we perform polynomial long division on \( \frac{t^8}{t^3 - 1} \): 1. Divide \( t^8 \) by \( t^3 \) to get \( t^5 \). 2. Multiply \( t^5 \) by \( t^3 - 1 \) to get \( t^8 - t^5 \). 3. Subtract to get \( t^5 \). 4. Divide \( t^5 \) by \( t^3 \) to get \( t^2 \). 5. Continue this process until you reach a remainder of degree less than 3. The result of the long division will yield: \[ t^5 + t^2 + t + \frac{1}{t^3 - 1} \] ### Step 4: Integrate Each Term Now we integrate each term: \[ 6 \left( \int t^5 \, dt + \int t^2 \, dt + \int t \, dt + \int \frac{1}{t^3 - 1} \, dt \right) \] Calculating these integrals gives: \[ = 6 \left( \frac{t^6}{6} + \frac{t^3}{3} + \frac{t^2}{2} + \text{(integral of } \frac{1}{t^3 - 1}) \right) + C \] ### Step 5: Substitute Back Finally, substitute back \( t = x^{1/6} \): \[ = x + 2x^{1/2} + 3x^{1/3} + 6 \log(t^3 - 1) + C \] Thus, the final answer is: \[ \int \frac{x^{1/2}}{x^{1/2} - x^{1/3}} \, dx = x + 2x^{1/2} + 3x^{1/3} + 6 \log(x^{1/6} - 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int x^(1/3)(2+x^(2/3))dx" is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int[(x)^(1//3)-(1)/((x^())^(1//3))]dx is equal to :

int _(-1)^(2) |x|^(3) dx is equal to

" 1."int x^(2)e^(x^(3))dx" is equal to "

int(x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx is equal to

int(x^(2)+1)/(x)dx is equal to -

int(2xe^(x^(2))(x^(2)-1))/((x^(2)+1)^(3))dx is equal to