Home
Class 12
MATHS
If int (1)/(sin (x -a ) cos (x -b)) dx =...

If `int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B.` Then

A

`A = cos (a -b) , B in R`

B

`A = sec (a -b) , B = C in R`

C

`A = sin (a-b), B in R`

D

`A =cosec (a-b) , B in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sin(x - a) \cos(x - b)} \, dx \) and find the value of \( A \) in the expression \( A \log \left| \frac{\sin(x - a)}{\cos(x - b)} \right| + B \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sin(x - a) \cos(x - b)} \, dx \] ### Step 2: Multiply and Divide by a Constant To facilitate integration, we multiply and divide by \( \cos(a - b) \): \[ I = \int \frac{\cos(a - b)}{\sin(x - a) \cos(x - b) \cos(a - b)} \, dx \] ### Step 3: Use Trigonometric Identity Using the identity \( \cos(a - b) = \cos a \cos b + \sin a \sin b \), we can express the integral as: \[ I = \int \frac{\cos(a - b)}{\sin(x - a) \cos(x - b)} \, dx \] ### Step 4: Split the Integral We can split the integral into two parts: \[ I = \frac{1}{\cos(a - b)} \left( \int \frac{\cos(x - b)}{\sin(x - a)} \, dx + \int \frac{\sin(x - a)}{\cos(x - b)} \, dx \right) \] ### Step 5: Evaluate Each Integral Using the known integrals: - \( \int \cot(x - a) \, dx = \log |\sin(x - a)| + C \) - \( \int \tan(x - b) \, dx = -\log |\cos(x - b)| + C \) We can write: \[ I = \frac{1}{\cos(a - b)} \left( \log |\sin(x - a)| - \log |\cos(x - b)| \right) + C \] ### Step 6: Combine the Logarithms Using properties of logarithms, we can combine the logs: \[ I = \frac{1}{\cos(a - b)} \log \left| \frac{\sin(x - a)}{\cos(x - b)} \right| + C \] ### Step 7: Identify Constants From the original expression \( A \log \left| \frac{\sin(x - a)}{\cos(x - b)} \right| + B \), we can identify: \[ A = \frac{1}{\cos(a - b)} \] and \( B \) is the constant of integration. ### Conclusion Thus, the value of \( A \) is: \[ A = \sec(a - b) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int (sin (x-a))/(cos (x+b))ax

int(sin(x-a)dx)/cos(x-b)

int(sin(x+a))/(cos(x-b))dx=

int(1)/(sin(x-a)cos(x-b))dx is equal to

Evaluate: int(1)/(sin(x-a)cos(x-b))dx

If int(k)/(sin(x-a)cos(x-b))dx=log[(sin(x-a))/(cos(x-b))]+c , then k=

int(dx)/(a sin x+b cos x)

int(dx)/(a sin x+b cos x)

int (ln (tan x)) / (sin x cos x) dx