Home
Class 12
MATHS
int (x + (1)/(x)) ^(n +5) ((x ^(2) -1)/(...

`int (x + (1)/(x)) ^(n +5) ((x ^(2) -1)/( x ^(2))) dx` is equal to:

A

`((x +(1)/(x) ) ^(n + 6))/( n + 6) +c`

B

`[ (x ^(2) + 1)/( x ^(2)) ] ^(n + 6)( n+ 6) + c`

C

`[ (x)/( x ^(2) + 1) ] ^(n + 6) (n+6) + c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \left( x + \frac{1}{x} \right)^{n+5} \cdot \frac{x^2 - 1}{x^2} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral in a more manageable form: \[ I = \int \left( x + \frac{1}{x} \right)^{n+5} \cdot \left( 1 - \frac{1}{x^2} \right) \, dx. \] ### Step 2: Substitute Let \[ y = x + \frac{1}{x}. \] Then, differentiate \(y\): \[ \frac{dy}{dx} = 1 - \frac{1}{x^2} \implies dy = \left( 1 - \frac{1}{x^2} \right) dx. \] This means we can substitute \(dx\) in terms of \(dy\): \[ dx = \frac{dy}{1 - \frac{1}{x^2}}. \] ### Step 3: Change of Variables Now we substitute \(y\) and \(dx\) into the integral: \[ I = \int y^{n+5} \, dy. \] ### Step 4: Integrate Now we can integrate: \[ I = \frac{y^{n+6}}{n+6} + C. \] ### Step 5: Substitute Back Finally, substitute back \(y = x + \frac{1}{x}\): \[ I = \frac{\left( x + \frac{1}{x} \right)^{n+6}}{n+6} + C. \] ### Final Result Thus, the integral evaluates to: \[ I = \frac{\left( x + \frac{1}{x} \right)^{n+6}}{n+6} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

int(x)/((x^(2)+1)(x^(2)+2))dx is equal to

int(x^(2))/(x(x^(2)-1))dx is equal to

int(x e^(x))/((1+x)^(2)) dx is equal to

int((x+1)^(2))/(x(x^(2)+1))dx is equal to:

int(2x^(3)-1)/(x^(4)+x)dx is equal to

inte^(x)((x-1))/(x^(2))dx is equal to

int e^(x)""((x-1)/(x^(2)))dx is equal to

int(x+(1)/(x))^(3/2)((x^(2)-1)/(x^(2)))dx is equal to (A) (1)/(3)(x+(1)/(x))^(3)+C (B)(2)/(5)(x+(1)/(x))^(5/2)

int(1+x^(2))/(x)dx is equal to: