Home
Class 12
MATHS
The primitive of the function f(x)=...

The primitive of the function
`f(x)=(1-(1)/(x^(2)))a^(x+(1)/(x))x,gt0`, is

A

`(a ^(x + (1)/(x )))/(log _(e) a )`

B

`(log _(e) a) .a^(x + (1)/(x))`

C

`(a ^(x + (1)/(x )))/(x) . log _(e) a`

D

`(xa ^(x + (1)/( x)))/( log _(e) a)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

The primitive of the function f(x)=(1-(1)/(x^(2)))a^(x+(1)/(x)),a>0 is (a^(x+(1)/(x)))/((log)_(e)a) (b) (log_(e)adot a^(x+(1)/(x))(c)(a^(x+(1)/(x)))/(x)(log)_(e)a(d)x(a^(x+(1)/(x)))/((log)_(e)a)

If the primitive of the function f(x)=(x^(2009))/((1+x^(2))^(1006)) w.r.t.x is equal to (1)/(n)((x^(2))/(1+x^(2)))^(m)+c find m/n

If the primitive of the function f(x)=(x^(2009))/((1+x^(2))^(1006)) w.r.t. x is equal to 1/n ((x^(2))/(1+x^(2)))^(m)+C , then n/m is equal to .......

The function xsqrt(1-x^(2)),(x gt0) has

The domain of the derivative of the function: f(x)={{:(,tan^(-1)x,|x| le1),(,(1)/(2)(|x|-1),|x|gt1):}

The function f(x)=x cos((1)/(x^(2))) for x!=0,f(0)=1 then at x=0,f(x) is

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

Discuss the continuity of the function f(x) ={(1+x^2,x le 1),(1-x, x gt 1):} at x=1.

If function f(x)=x-(|x|)/(x),x lt 0 =x+(|x|)/(x),x gt 0 =1,x=0 , then