Home
Class 12
MATHS
Value of int (x ^(2) + 1)/((x -1) (x-2))...

Value of `int (x ^(2) + 1)/((x -1) (x-2)) dx` is

A

`x + log [ ((x-2)^(5))/( (x -1) ^(2))] +C`

B

`x + log [ (( x -1) ^(2))/( (x -2 ) ^(5))] +C`

C

`x - log [ ((x -1) ^(5))/( (x -1) ^(1))] + C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2 + 1}{(x - 1)(x - 2)} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{x^2 + 1}{(x - 1)(x - 2)} = \frac{x^2 - 1 + 2}{(x - 1)(x - 2)} = \frac{(x^2 - 1) + 2}{(x - 1)(x - 2)} \] Using the difference of squares, we can express \( x^2 - 1 \) as \( (x - 1)(x + 1) \): \[ = \frac{(x - 1)(x + 1) + 2}{(x - 1)(x - 2)} \] ### Step 2: Split the fraction Now we can split the fraction into two parts: \[ = \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)} + \frac{2}{(x - 1)(x - 2)} \] This simplifies to: \[ = \frac{x + 1}{x - 2} + \frac{2}{(x - 1)(x - 2)} \] ### Step 3: Integrate each term separately Now we can integrate each term separately: \[ \int \left( \frac{x + 1}{x - 2} + \frac{2}{(x - 1)(x - 2)} \right) \, dx = \int \frac{x + 1}{x - 2} \, dx + \int \frac{2}{(x - 1)(x - 2)} \, dx \] ### Step 4: Solve the first integral For the first integral \( \int \frac{x + 1}{x - 2} \, dx \), we can use substitution: Let \( u = x - 2 \) then \( du = dx \) and \( x = u + 2 \): \[ \int \frac{(u + 2) + 1}{u} \, du = \int \left( 1 + \frac{3}{u} \right) \, du = u + 3 \ln |u| + C_1 = (x - 2) + 3 \ln |x - 2| + C_1 \] ### Step 5: Solve the second integral using partial fractions For the second integral \( \int \frac{2}{(x - 1)(x - 2)} \, dx \), we use partial fractions: \[ \frac{2}{(x - 1)(x - 2)} = \frac{A}{x - 1} + \frac{B}{x - 2} \] Multiplying through by the denominator gives: \[ 2 = A(x - 2) + B(x - 1) \] Setting \( x = 1 \): \[ 2 = A(1 - 2) + B(1 - 1) \Rightarrow 2 = -A \Rightarrow A = -2 \] Setting \( x = 2 \): \[ 2 = A(2 - 2) + B(2 - 1) \Rightarrow 2 = B \Rightarrow B = 2 \] Thus: \[ \frac{2}{(x - 1)(x - 2)} = \frac{-2}{x - 1} + \frac{2}{x - 2} \] Now we can integrate: \[ \int \left( \frac{-2}{x - 1} + \frac{2}{x - 2} \right) \, dx = -2 \ln |x - 1| + 2 \ln |x - 2| + C_2 \] ### Step 6: Combine results Combining both integrals, we have: \[ \int \frac{x^2 + 1}{(x - 1)(x - 2)} \, dx = (x - 2) + 3 \ln |x - 2| - 2 \ln |x - 1| + 2 \ln |x - 2| + C \] This simplifies to: \[ = x - 2 + 5 \ln |x - 2| - 2 \ln |x - 1| + C \] ### Final Answer The value of the integral is: \[ \int \frac{x^2 + 1}{(x - 1)(x - 2)} \, dx = x - 2 + 5 \ln |x - 2| - 2 \ln |x - 1| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int (2x^2+1)/((x+1)(x-2)) dx

The value of int(x^(2)+1)/(x^(4)-x^(2)+1)dx is

The value of int((x^(2)+1))/(x^(4)+x^(2)+1)dx is equal to

The value of int(x^(2)+1)/(x^(2)-1)dx is

The value of int_0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

The value of int_(0)^(1) x^(2) (1- x)^(9) dx is

Find the value of int(x^(2)+(1)/(x^(2)))dx

int(x^(2)+x+1)/(x^(2)-x+1)dx