Home
Class 12
MATHS
int ( x ^(3))/( (x ^(2) + 1) (x ^(2) + 4...

`int ( x ^(3))/( (x ^(2) + 1) (x ^(2) + 4 ))dx` is equal to

A

`tan ^(-1) x +2 tan ^(-1) "" ((x)/(2)) + C`

B

`tan ^(-1) ((x)/(2)) - 4 tan ^(-1) x +C`

C

`-1/2 tan ^(-1) x + (2)/(3) tan ^(-1) (( x )/(2)) +C`

D

`4 tan ^(-1) ((x)/(2)) - 2 tan ^(-1) x +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x^3}{(x^2 + 1)(x^2 + 4)} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ I = \int \frac{x^3}{(x^2 + 1)(x^2 + 4)} \, dx. \] ### Step 2: Use Substitution We can use the substitution \( t = x^2 \). Then, \( dt = 2x \, dx \) or \( dx = \frac{dt}{2\sqrt{t}} \). Substituting \( x^2 = t \) into the integral gives: \[ I = \int \frac{t^{3/2}}{(t + 1)(t + 4)} \cdot \frac{dt}{2\sqrt{t}} = \frac{1}{2} \int \frac{t}{(t + 1)(t + 4)} \, dt. \] ### Step 3: Simplify the Integral Now, we simplify the integral: \[ I = \frac{1}{2} \int \frac{t}{(t + 1)(t + 4)} \, dt. \] ### Step 4: Perform Partial Fraction Decomposition Next, we perform partial fraction decomposition on the integrand: \[ \frac{t}{(t + 1)(t + 4)} = \frac{A}{t + 1} + \frac{B}{t + 4}. \] Multiplying through by the denominator \((t + 1)(t + 4)\) gives: \[ t = A(t + 4) + B(t + 1). \] ### Step 5: Solve for A and B Expanding and collecting like terms, we have: \[ t = (A + B)t + (4A + B). \] By comparing coefficients, we get: 1. \( A + B = 1 \) 2. \( 4A + B = 0 \) From the first equation, \( B = 1 - A \). Substituting into the second equation: \[ 4A + (1 - A) = 0 \implies 3A + 1 = 0 \implies A = -\frac{1}{3}. \] Then, substituting back to find \( B \): \[ B = 1 - \left(-\frac{1}{3}\right) = \frac{4}{3}. \] ### Step 6: Rewrite the Integral Now we can rewrite the integral using these values: \[ I = \frac{1}{2} \int \left(-\frac{1}{3(t + 1)} + \frac{4}{3(t + 4)}\right) dt. \] ### Step 7: Integrate Integrating term by term: \[ I = \frac{1}{2} \left(-\frac{1}{3} \ln |t + 1| + \frac{4}{3} \ln |t + 4| \right) + C. \] ### Step 8: Substitute Back Substituting \( t = x^2 \) back into the equation gives: \[ I = \frac{1}{2} \left(-\frac{1}{3} \ln |x^2 + 1| + \frac{4}{3} \ln |x^2 + 4| \right) + C. \] ### Step 9: Simplify the Final Expression This simplifies to: \[ I = -\frac{1}{6} \ln(x^2 + 1) + \frac{2}{3} \ln(x^2 + 4) + C. \] ### Final Answer Thus, the final result for the integral is: \[ I = -\frac{1}{6} \ln(x^2 + 1) + \frac{2}{3} \ln(x^2 + 4) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)+1)/(x)dx is equal to -

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

int(1)/(x^(2)+4x+13)dx is equal to

int(x)/((x^(2)+1)(x^(2)+2))dx is equal to

int(1+x^(2))/(x)dx is equal to:

int((x+1)^(2))/(x(x^(2)+1))dx is equal to:

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(sqrt(x^(2)+1))/(x^(4))dx is equal to

int(x^(4)-1)/(x^(2)(x^(4)+x^(2)+1)^(1/2))dx" is equal to "

int(1)/(sqrt(9x-4x^(2)))dx is equal to

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. int (dx)/( sin x ( 3 cos ^(2) x)) is equal to

    Text Solution

    |

  2. int(x^(2)-1)/((x^(2)+1)sqrt(x^(4)+1)) dx is equal to -

    Text Solution

    |

  3. int ( x ^(3))/( (x ^(2) + 1) (x ^(2) + 4 ))dx is equal to

    Text Solution

    |

  4. int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equal to

    Text Solution

    |

  5. If int (3x+4)/(x^3-2x-4) \ dx = log|x-2| + k logf(x) + c, then (i) f...

    Text Solution

    |

  6. int (27 e ^(9x) + e ^( 12 x )) ^(1//3) dx is equal to

    Text Solution

    |

  7. Evaluate: int(sinx)/(sin4x)dx

    Text Solution

    |

  8. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  9. int sin 2x. Logcos x dx is equal to

    Text Solution

    |

  10. If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f ...

    Text Solution

    |

  11. If a (n) = int(0) ^( (pi)/(2)) (sin^(2) nx)/( sin x) dx then a (2) ...

    Text Solution

    |

  12. Let I=overset(1)underset(0)int (sin x)/(sqrt(x))dx andI=overset(1)unde...

    Text Solution

    |

  13. overset(pi//2)underset(-pi//2)int (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  14. If underset(0)overset(1)int e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  15. The value of the integral int(0) ^(pi) cos 2 x log (e) sin x dx is

    Text Solution

    |

  16. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  17. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  18. The value of int(1)^(e^(37))(pi sin(pi log x))/(x)dx is ………….

    Text Solution

    |

  19. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  20. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |