Home
Class 12
MATHS
int (27 e ^(9x) + e ^( 12 x )) ^(1//3) d...

`int (27 e ^(9x) + e ^( 12 x )) ^(1//3) dx` is equal to

A

`(1//4) (27 + e ^(3x)) ^(1//2) +C`

B

`(1//4) (27 + e ^(3x)) ^(2//3) +C`

C

`(1//3) (27 + e ^(3x)) ^(4//3) +C`

D

`(1//4) (27 + e ^(3x)) ^(4//3) +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (27 e^{9x} + e^{12x})^{1/3} \, dx \), we will follow these steps: ### Step 1: Simplify the expression inside the integral We start with the integral: \[ I = \int (27 e^{9x} + e^{12x})^{1/3} \, dx \] We can factor out \( e^{9x} \) from the expression inside the parentheses: \[ I = \int \left( e^{9x} (27 + e^{3x}) \right)^{1/3} \, dx \] Using the property of exponents, we can rewrite this as: \[ I = \int e^{3x} (27 + e^{3x})^{1/3} \, dx \] ### Step 2: Substitution Let \( y = 27 + e^{3x} \). Then, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 3 e^{3x} \] This implies: \[ dx = \frac{dy}{3 e^{3x}} = \frac{dy}{3(y - 27)} \] Now substituting \( e^{3x} = y - 27 \) into the integral gives: \[ I = \int (y - 27) \cdot y^{1/3} \cdot \frac{dy}{3(y - 27)} \] This simplifies to: \[ I = \frac{1}{3} \int y^{1/3} \, dy \] ### Step 3: Integrate Now we can integrate \( y^{1/3} \): \[ I = \frac{1}{3} \cdot \frac{y^{4/3}}{4/3} + C = \frac{1}{4} y^{4/3} + C \] ### Step 4: Substitute back for \( y \) Now we substitute back \( y = 27 + e^{3x} \): \[ I = \frac{1}{4} (27 + e^{3x})^{4/3} + C \] ### Final Answer Thus, the integral is: \[ \int (27 e^{9x} + e^{12x})^{1/3} \, dx = \frac{1}{4} (27 + e^{3x})^{4/3} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int e^(x)dx is equal to

int_(1)^(e)1/x dx is equal to

int e^(x log a) e^(x) dx is equal to

int e^(a log x) + e^( x log a) dx is equal to

int(e^x)/(e^(x)+1)dx" is equal to "

What is int e^(e^(x)) e^(x) dx equal to ?

int(x e^(x))/((1+x)^(2)) dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equal to

    Text Solution

    |

  2. If int (3x+4)/(x^3-2x-4) \ dx = log|x-2| + k logf(x) + c, then (i) f...

    Text Solution

    |

  3. int (27 e ^(9x) + e ^( 12 x )) ^(1//3) dx is equal to

    Text Solution

    |

  4. Evaluate: int(sinx)/(sin4x)dx

    Text Solution

    |

  5. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  6. int sin 2x. Logcos x dx is equal to

    Text Solution

    |

  7. If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f ...

    Text Solution

    |

  8. If a (n) = int(0) ^( (pi)/(2)) (sin^(2) nx)/( sin x) dx then a (2) ...

    Text Solution

    |

  9. Let I=overset(1)underset(0)int (sin x)/(sqrt(x))dx andI=overset(1)unde...

    Text Solution

    |

  10. overset(pi//2)underset(-pi//2)int (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  11. If underset(0)overset(1)int e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  12. The value of the integral int(0) ^(pi) cos 2 x log (e) sin x dx is

    Text Solution

    |

  13. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  14. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  15. The value of int(1)^(e^(37))(pi sin(pi log x))/(x)dx is ………….

    Text Solution

    |

  16. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  17. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  18. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  19. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  20. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |