Home
Class 12
MATHS
int sin 2x. Logcos x dx is equal to...

`int sin 2x. Logcos x dx is ` equal to

A

`cos ^(2) x ((1)/(2) + log cos x) +k`

B

`cos ^(2) x.log cos x +k`

C

`cos ^(2) x ((1)/(2) - log cos x ) +k`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sin(2x) \log(\cos x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We know that \( \sin(2x) = 2 \sin(x) \cos(x) \). Therefore, we can rewrite the integral as: \[ I = \int 2 \sin(x) \cos(x) \log(\cos x) \, dx \] ### Step 2: Use Substitution Let \( t = \cos(x) \). Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = -\sin(x) \, dx \quad \Rightarrow \quad dx = -\frac{dt}{\sin(x)} \] Now, substituting \( \sin(x) = \sqrt{1 - t^2} \) (since \( \sin^2(x) + \cos^2(x) = 1 \)), we have: \[ I = \int 2 \sin(x) t \log(t) \left(-\frac{dt}{\sin(x)}\right) \] This simplifies to: \[ I = -2 \int t \log(t) \, dt \] ### Step 3: Integration by Parts Now, we will use integration by parts for the integral \( \int t \log(t) \, dt \). Let: - \( u = \log(t) \) \(\Rightarrow du = \frac{1}{t} dt\) - \( dv = t \, dt \) \(\Rightarrow v = \frac{t^2}{2}\) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we get: \[ \int t \log(t) \, dt = \frac{t^2}{2} \log(t) - \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt \] This simplifies to: \[ \int t \log(t) \, dt = \frac{t^2}{2} \log(t) - \frac{1}{2} \int t \, dt \] Calculating the remaining integral: \[ \int t \, dt = \frac{t^2}{2} \] Thus, we have: \[ \int t \log(t) \, dt = \frac{t^2}{2} \log(t) - \frac{1}{4} t^2 + C \] ### Step 4: Substitute Back Now substituting back into our expression for \( I \): \[ I = -2 \left( \frac{t^2}{2} \log(t) - \frac{1}{4} t^2 \right) + C \] This simplifies to: \[ I = -t^2 \log(t) + \frac{1}{2} t^2 + C \] ### Step 5: Substitute \( t = \cos(x) \) Finally, substituting \( t = \cos(x) \) back into the equation: \[ I = -\cos^2(x) \log(\cos(x)) + \frac{1}{2} \cos^2(x) + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{1}{2} \cos^2(x) - \cos^2(x) \log(\cos(x)) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int 1/(sin^2x cos^2x )dx is equal to:

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int_(0)^(2)|sin x-cos x|dx is equal to

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int x^(2) sin x dx is equal to

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. Evaluate: int(sinx)/(sin4x)dx

    Text Solution

    |

  2. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  3. int sin 2x. Logcos x dx is equal to

    Text Solution

    |

  4. If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f ...

    Text Solution

    |

  5. If a (n) = int(0) ^( (pi)/(2)) (sin^(2) nx)/( sin x) dx then a (2) ...

    Text Solution

    |

  6. Let I=overset(1)underset(0)int (sin x)/(sqrt(x))dx andI=overset(1)unde...

    Text Solution

    |

  7. overset(pi//2)underset(-pi//2)int (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  8. If underset(0)overset(1)int e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  9. The value of the integral int(0) ^(pi) cos 2 x log (e) sin x dx is

    Text Solution

    |

  10. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  11. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  12. The value of int(1)^(e^(37))(pi sin(pi log x))/(x)dx is ………….

    Text Solution

    |

  13. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  14. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  15. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  16. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  17. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |

  18. int ( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

    Text Solution

    |

  19. Let f (x) = x^(2) -2. If int (3) ^(6) f (x)dx =3f (c ) for some c in (...

    Text Solution

    |

  20. int0^pix(sin^4xcos^4x)dx

    Text Solution

    |