Home
Class 12
MATHS
If int (e ^(x) (1+ sin x )dx)/( 1+ cos x...

If `int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C,` then f (x) is equal to

A

`sin ""x/2`

B

`cos""x/2`

C

`tan ""x/2`

D

`log "" x/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^x (1 + \sin x)}{1 + \cos x} \, dx, \] we will follow a systematic approach. ### Step 1: Simplify the integrand We can rewrite the integrand by using the identity for \(1 + \cos x\) and \(1 + \sin x\): \[ 1 + \sin x = 1 + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) + 1. \] The term \(1 + \cos x\) can be expressed as: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right). \] Thus, we rewrite the integral as: \[ \int \frac{e^x (1 + \sin x)}{1 + \cos x} \, dx = \int \frac{e^x (1 + \sin x)}{2 \cos^2\left(\frac{x}{2}\right)} \, dx. \] ### Step 2: Split the integral Now we can split the integral: \[ \int \frac{e^x (1 + \sin x)}{2 \cos^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int e^x \sec^2\left(\frac{x}{2}\right) (1 + \sin x) \, dx. \] ### Step 3: Use substitution Let’s use the substitution \(u = \frac{x}{2}\), which gives \(dx = 2 \, du\). The integral becomes: \[ \frac{1}{2} \int e^{2u} \sec^2(u) (1 + 2 \sin u) \cdot 2 \, du = \int e^{2u} \sec^2(u) (1 + 2 \sin u) \, du. \] ### Step 4: Apply integration by parts We can apply integration by parts here. We know that: \[ \int e^{ax} f'(x) \, dx = e^{ax} f(x) - \int e^{ax} f(x) \, dx. \] In our case, we can let \(f(u) = \tan(u)\) since \(\sec^2(u)\) is the derivative of \(\tan(u)\). ### Step 5: Solve the integral Thus, we have: \[ \int e^{2u} \sec^2(u) \, du = e^{2u} \tan(u) - \int e^{2u} \tan(u) \, du. \] After simplifying, we find that: \[ \int e^{2u} \tan(u) \, du = e^{2u} \tan(u) - \int e^{2u} \sec^2(u) \, du. \] ### Step 6: Back substitute Now, we can back substitute \(u = \frac{x}{2}\) to express everything in terms of \(x\): \[ f(x) = \tan\left(\frac{x}{2}\right). \] ### Conclusion Thus, we conclude that: \[ f(x) = \tan\left(\frac{x}{2}\right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int e ^ (x) * (1 + sin x) / (1 + cos x) dx

int e ^ (x) ((1 + sin x) / (1 + cos x)) dx

int e ^ (x) (1-sin x) / (1-cos x) dx

If int(x+sin x)/(1+cos x)dx=f(x)tan g(x)+C , then, f(x)=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

int e^(x)(cos x-sin x)dx is equal to

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  2. int sin 2x. Logcos x dx is equal to

    Text Solution

    |

  3. If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f ...

    Text Solution

    |

  4. If a (n) = int(0) ^( (pi)/(2)) (sin^(2) nx)/( sin x) dx then a (2) ...

    Text Solution

    |

  5. Let I=overset(1)underset(0)int (sin x)/(sqrt(x))dx andI=overset(1)unde...

    Text Solution

    |

  6. overset(pi//2)underset(-pi//2)int (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  7. If underset(0)overset(1)int e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  8. The value of the integral int(0) ^(pi) cos 2 x log (e) sin x dx is

    Text Solution

    |

  9. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  10. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  11. The value of int(1)^(e^(37))(pi sin(pi log x))/(x)dx is ………….

    Text Solution

    |

  12. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  13. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  14. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  15. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  16. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |

  17. int ( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

    Text Solution

    |

  18. Let f (x) = x^(2) -2. If int (3) ^(6) f (x)dx =3f (c ) for some c in (...

    Text Solution

    |

  19. int0^pix(sin^4xcos^4x)dx

    Text Solution

    |

  20. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |