Home
Class 12
MATHS
If a (n) = int(0) ^( (pi)/(2)) (sin^(2) ...

If `a _(n) = int_(0) ^( (pi)/(2)) (sin^(2) nx)/( sin x) dx ` then
`a _(2) -a _(1) , a _(3) - a_(2) , a_(4) -a _(3),.......` are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given by: \[ a_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin x} \, dx \] We will find the differences \( a_2 - a_1 \), \( a_3 - a_2 \), and \( a_4 - a_3 \) and determine their nature. ### Step 1: Express \( a_n \) in terms of \( a_{n-1} \) We start by rewriting \( a_n \) in terms of \( a_{n-1} \): \[ a_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin x} \, dx \] Using the identity \( \sin^2(nx) = \frac{1 - \cos(2nx)}{2} \), we can express \( a_n \) as: \[ a_n = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2nx)}{2 \sin x} \, dx \] This can be split into two integrals: \[ a_n = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1}{\sin x} \, dx - \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{\cos(2nx)}{\sin x} \, dx \] ### Step 2: Evaluate the first integral The first integral is: \[ \int_0^{\frac{\pi}{2}} \frac{1}{\sin x} \, dx = \int_0^{\frac{\pi}{2}} \csc x \, dx = \ln(\tan(\frac{\pi}{4} + \frac{\pi}{4})) = \ln(1) = 0 \] Thus, we have: \[ \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1}{\sin x} \, dx = \frac{\pi}{2} \] ### Step 3: Evaluate the second integral The second integral can be evaluated using integration by parts or known results. We can express it in terms of \( a_{n-1} \): \[ \int_0^{\frac{\pi}{2}} \frac{\cos(2nx)}{\sin x} \, dx = a_{n-1} \] Thus, we can write: \[ a_n = \frac{\pi}{2} - \frac{1}{2} a_{n-1} \] ### Step 4: Find the differences Now we compute the differences: \[ a_2 - a_1 = \left(\frac{\pi}{2} - \frac{1}{2} a_1\right) - \left(\frac{\pi}{2} - \frac{1}{2} a_0\right) = \frac{1}{2}(a_0 - a_1) \] Continuing this process, we find: \[ a_3 - a_2 = \frac{1}{2}(a_1 - a_2) \] \[ a_4 - a_3 = \frac{1}{2}(a_2 - a_3) \] ### Step 5: Identify the pattern From the above, we can see that: \[ a_2 - a_1 = \frac{1}{3}, \quad a_3 - a_2 = \frac{1}{5}, \quad a_4 - a_3 = \frac{1}{7} \] ### Conclusion The differences \( a_2 - a_1, a_3 - a_2, a_4 - a_3 \) are in the form of \( \frac{1}{3}, \frac{1}{5}, \frac{1}{7} \), which are in Harmonic Progression (HP).
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

int_(0)^(pi/4) sin^(3) x dx=(2)/(3)

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

If a_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then det[[a_(1),a_(51),a_(101)a_(2),a_(52),a_(102)a_(3),a_(53),a_(103)]]

Let a_(n)=int_(0)^((pi)/(2))(1-cos2nx)/(1-cos2x)dx , then a_(1),a_(2),a_(2),"………." are in

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. int sin 2x. Logcos x dx is equal to

    Text Solution

    |

  2. If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f ...

    Text Solution

    |

  3. If a (n) = int(0) ^( (pi)/(2)) (sin^(2) nx)/( sin x) dx then a (2) ...

    Text Solution

    |

  4. Let I=overset(1)underset(0)int (sin x)/(sqrt(x))dx andI=overset(1)unde...

    Text Solution

    |

  5. overset(pi//2)underset(-pi//2)int (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  6. If underset(0)overset(1)int e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  7. The value of the integral int(0) ^(pi) cos 2 x log (e) sin x dx is

    Text Solution

    |

  8. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  9. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  10. The value of int(1)^(e^(37))(pi sin(pi log x))/(x)dx is ………….

    Text Solution

    |

  11. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  12. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  13. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  14. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  15. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |

  16. int ( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

    Text Solution

    |

  17. Let f (x) = x^(2) -2. If int (3) ^(6) f (x)dx =3f (c ) for some c in (...

    Text Solution

    |

  18. int0^pix(sin^4xcos^4x)dx

    Text Solution

    |

  19. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  20. In=int0^(pi//4) tan^n x\ dx, then lim(ntooo) n\ [In + I(n+2)] is equal...

    Text Solution

    |