Home
Class 12
MATHS
The value of int(0) ^(1) (dx )/( e ^(x)...

The value of `int_(0) ^(1) (dx )/( e ^(x) + e)` is equal to

A

`1/e log ((1 + e)/(2))`

B

` log ((1+e )/(2 ))`

C

`1/e log (1 +e)`

D

`log ((2)/( 1 + e))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{dx}{e^x + e}, \] we will follow these steps: ### Step 1: Substitute \( t = e^x + e \) Let \( t = e^x + e \). Then, differentiating both sides gives: \[ dt = e^x \, dx \implies dx = \frac{dt}{e^x}. \] From our substitution, we can express \( e^x \) in terms of \( t \): \[ e^x = t - e. \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ t = e^0 + e = 1 + e. \] When \( x = 1 \): \[ t = e^1 + e = e + e = 2e. \] Thus, the limits change from \( x = 0 \) to \( x = 1 \) into \( t = 1 + e \) to \( t = 2e \). ### Step 3: Rewrite the integral Substituting \( dx \) and changing the limits, we have: \[ I = \int_{1 + e}^{2e} \frac{1}{t} \cdot \frac{dt}{t - e}. \] ### Step 4: Simplify the integral We can rewrite the integrand as: \[ \frac{1}{t(t - e)} = \frac{1}{e} \left( \frac{1}{t - e} - \frac{1}{t} \right). \] Thus, we can express the integral as: \[ I = \frac{1}{e} \int_{1 + e}^{2e} \left( \frac{1}{t - e} - \frac{1}{t} \right) dt. \] ### Step 5: Integrate Now we can integrate term by term: \[ I = \frac{1}{e} \left[ \ln |t - e| - \ln |t| \right]_{1 + e}^{2e}. \] ### Step 6: Evaluate the limits Evaluating at the limits \( t = 2e \) and \( t = 1 + e \): \[ I = \frac{1}{e} \left[ \ln |2e - e| - \ln |2e| - \left( \ln |1 + e - e| - \ln |1 + e| \right) \right]. \] This simplifies to: \[ I = \frac{1}{e} \left[ \ln |e| - \ln |2e| - \left( \ln |1| - \ln |1 + e| \right) \right]. \] ### Step 7: Simplify further This can be simplified to: \[ I = \frac{1}{e} \left[ 1 - \ln 2 - \left( 0 - \ln(1 + e) \right) \right]. \] Thus, we have: \[ I = \frac{1}{e} \left[ 1 - \ln 2 + \ln(1 + e) \right]. \] ### Final Answer Therefore, the value of the integral is: \[ I = \frac{1}{e} \left[ \ln(1 + e) - \ln 2 \right] = \frac{1}{e} \ln \left( \frac{1 + e}{2} \right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1) (dx)/(e^(x)+e^(-x))

The value of int_(0)^(1) "max" (e^(x) , e^(1-x) ) dx equals

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to :

int(dx)/(e^(x)+e^(-x)) is equal to

int_(0)^(1) (1)/(e^(x) +e^(-x)) dx

l=int(dx)/(1+e^(x)) is equal to

int_(0)^(1)(e^(x)dx)/(1+e^(x))

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  2. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  3. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  4. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  5. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |

  6. int ( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

    Text Solution

    |

  7. Let f (x) = x^(2) -2. If int (3) ^(6) f (x)dx =3f (c ) for some c in (...

    Text Solution

    |

  8. int0^pix(sin^4xcos^4x)dx

    Text Solution

    |

  9. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  10. In=int0^(pi//4) tan^n x\ dx, then lim(ntooo) n\ [In + I(n+2)] is equal...

    Text Solution

    |

  11. What is int tan^(2) x sec^(4) x dx equal to ?

    Text Solution

    |

  12. int(0)^(pi//2) sin^(2) x cos ^(3) x dx

    Text Solution

    |

  13. If int0^ooe^(-ax)dx=1/a, then int0^oo(x^n)e^(-ax)dx is

    Text Solution

    |

  14. If I(m,n)= overset(1)underset(0)int x^(m) (ln x)^(n)dx then I(m,n) i...

    Text Solution

    |

  15. What is the limiting value of the expression ({(n +1) (n+2).....(2n)...

    Text Solution

    |

  16. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  17. The limit, when the tends to infinity, of the series (sqrtn)/( sqrt ...

    Text Solution

    |

  18. The series 1 + 1/2 + 1/3 +…..+ 1/n can be expressed by the definite in...

    Text Solution

    |

  19. lim(n - >oo) {1/(2n+1)+1/( 2n +2) +....... 1/(2n +n)} is equal to

    Text Solution

    |

  20. Evaluate: int(1+2x+3x^2+4x^3+)dx ,(<|x|<1)

    Text Solution

    |