Home
Class 12
MATHS
Let f (x) = x^(2) -2. If int (3) ^(6) f ...

Let `f (x) = x^(2) -2. If int _(3) ^(6) f (x)dx =3f (c )` for some `c in (3,6)` then the value of c is equal to

A

`sqrt12`

B

`sqrt21`

C

`sqrt19`

D

`sqrt17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the function \( f(x) = x^2 - 2 \) from 3 to 6 and set it equal to \( 3f(c) \) for some \( c \) in the interval \( (3, 6) \). ### Step-by-Step Solution: 1. **Set up the integral**: We need to compute the integral: \[ \int_{3}^{6} (x^2 - 2) \, dx \] 2. **Calculate the integral**: We can split the integral into two parts: \[ \int_{3}^{6} x^2 \, dx - \int_{3}^{6} 2 \, dx \] - For the first part, we use the formula for the integral of \( x^n \): \[ \int x^2 \, dx = \frac{x^3}{3} \] Evaluating from 3 to 6: \[ \left[ \frac{x^3}{3} \right]_{3}^{6} = \frac{6^3}{3} - \frac{3^3}{3} = \frac{216}{3} - \frac{27}{3} = 72 - 9 = 63 \] - For the second part: \[ \int 2 \, dx = 2x \quad \text{and evaluating from 3 to 6 gives:} \] \[ [2x]_{3}^{6} = 2(6) - 2(3) = 12 - 6 = 6 \] - Combining both results: \[ \int_{3}^{6} (x^2 - 2) \, dx = 63 - 6 = 57 \] 3. **Set the integral equal to \( 3f(c) \)**: We have: \[ 57 = 3f(c) \] Since \( f(c) = c^2 - 2 \), we can substitute: \[ 57 = 3(c^2 - 2) \] 4. **Solve for \( c^2 \)**: Rearranging the equation: \[ 57 = 3c^2 - 6 \] \[ 3c^2 = 57 + 6 = 63 \] \[ c^2 = \frac{63}{3} = 21 \] 5. **Find \( c \)**: Taking the square root: \[ c = \sqrt{21} \] ### Final Answer: Thus, the value of \( c \) is: \[ c = \sqrt{21} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

If int_(a)^(b) {f(x)-3x}dx=a^(2)-b^(2) , then the value of f((pi)/(6)) , is

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_(1)^(x)f(t)dt=3xf(x)-x^(3) for all x>=1, then the value of f(2) is

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

If int_(a)^(b)(f(x)-3x)dx=a^(2)-b^(2) then the value of f((pi)/(6)) is

If f(x) = sqrt(4x^(2)+4x-3) then int(x+3)/(f(x))dx is equal

Let f(x) = inte^(x^(2))(x-2)(x-3)(x-4)dx then f increases on

If f(6-x)=f(x), for all x, then 1/5 int_2^3 x[f(x)+f(x+1)]dx is equal to :

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  2. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  3. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  4. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |

  5. int ( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

    Text Solution

    |

  6. Let f (x) = x^(2) -2. If int (3) ^(6) f (x)dx =3f (c ) for some c in (...

    Text Solution

    |

  7. int0^pix(sin^4xcos^4x)dx

    Text Solution

    |

  8. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  9. In=int0^(pi//4) tan^n x\ dx, then lim(ntooo) n\ [In + I(n+2)] is equal...

    Text Solution

    |

  10. What is int tan^(2) x sec^(4) x dx equal to ?

    Text Solution

    |

  11. int(0)^(pi//2) sin^(2) x cos ^(3) x dx

    Text Solution

    |

  12. If int0^ooe^(-ax)dx=1/a, then int0^oo(x^n)e^(-ax)dx is

    Text Solution

    |

  13. If I(m,n)= overset(1)underset(0)int x^(m) (ln x)^(n)dx then I(m,n) i...

    Text Solution

    |

  14. What is the limiting value of the expression ({(n +1) (n+2).....(2n)...

    Text Solution

    |

  15. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  16. The limit, when the tends to infinity, of the series (sqrtn)/( sqrt ...

    Text Solution

    |

  17. The series 1 + 1/2 + 1/3 +…..+ 1/n can be expressed by the definite in...

    Text Solution

    |

  18. lim(n - >oo) {1/(2n+1)+1/( 2n +2) +....... 1/(2n +n)} is equal to

    Text Solution

    |

  19. Evaluate: int(1+2x+3x^2+4x^3+)dx ,(<|x|<1)

    Text Solution

    |

  20. If Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-4))++1/(sqrt(3n^2+2n-1)),n ...

    Text Solution

    |