Home
Class 12
MATHS
What is the limiting value of the expres...

What is the limiting value of the expression
`({(n +1) (n+2).....(2n)} ^(1/n))/(n) ` when n tends to infinity ?

A

`1/2`

B

e

C

`2/e`

D

`4/e`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limiting value of the expression \[ \frac{(n + 1)(n + 2) \cdots (2n)^{1/n}}{n} \] as \( n \) tends to infinity, we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression in a more manageable form. The product \( (n + 1)(n + 2) \cdots (2n) \) can be expressed as: \[ \frac{(2n)!}{n!} \] Thus, our expression becomes: \[ \frac{((2n)! / n!)^{1/n}}{n} \] ### Step 2: Simplify the expression Now we can rewrite our expression as: \[ \frac{(2n)!^{1/n}}{(n!)^{1/n} \cdot n} \] ### Step 3: Use Stirling's approximation For large \( n \), we can use Stirling's approximation, which states: \[ n! \sim \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n \] Applying this to both \( (2n)! \) and \( n! \): \[ (2n)! \sim \sqrt{4 \pi n} \left(\frac{2n}{e}\right)^{2n} \] \[ n! \sim \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n \] ### Step 4: Substitute Stirling's approximation Substituting these approximations into our expression gives: \[ \frac{\left(\sqrt{4 \pi n} \left(\frac{2n}{e}\right)^{2n}\right)^{1/n}}{\left(\sqrt{2 \pi n} \left(\frac{n}{e}\right)^{n}\right)^{1/n} \cdot n} \] ### Step 5: Simplify further This simplifies to: \[ \frac{\sqrt{4 \pi n}^{1/n} \cdot \left(\frac{2n}{e}\right)^{2}}{\sqrt{2 \pi n}^{1/n} \cdot \left(\frac{n}{e}\right) \cdot n} \] As \( n \to \infty \), \( \sqrt{4 \pi n}^{1/n} \) and \( \sqrt{2 \pi n}^{1/n} \) both approach 1. Thus, we can focus on the main terms: \[ \frac{4}{1} = 4 \] ### Step 6: Final limit Thus, we have: \[ \lim_{n \to \infty} \frac{(n + 1)(n + 2) \cdots (2n)^{1/n}}{n} = \frac{4}{1} = 4 \] ### Conclusion The limiting value of the expression is: \[ \frac{4}{e} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

Value of expression 5n^2 - 20n at n = 2 is:

The value of the limit when n tends to infinity of the expression (1+(1)/(n))^(n) is

The value of the limit when x tends to zero of the expression ([(1+x)^(n)-1])/(x) is

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

Find the value of the limit given below lim_(n to 1/2)(4n^(2)-1)/(2n-1)

The expression n(n-1)(2n-1) is divisible by:

DISHA PUBLICATION-INTEGRALS -EXERCISE-1 CONCEPT BUILDER
  1. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  2. The value of int(0) ^(1) (dx )/( e ^(x) + e) is equal to

    Text Solution

    |

  3. The value of int(-1)^(3)(|x|+|x-1|) dx is equal to

    Text Solution

    |

  4. The value of int(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

    Text Solution

    |

  5. int ( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

    Text Solution

    |

  6. Let f (x) = x^(2) -2. If int (3) ^(6) f (x)dx =3f (c ) for some c in (...

    Text Solution

    |

  7. int0^pix(sin^4xcos^4x)dx

    Text Solution

    |

  8. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  9. In=int0^(pi//4) tan^n x\ dx, then lim(ntooo) n\ [In + I(n+2)] is equal...

    Text Solution

    |

  10. What is int tan^(2) x sec^(4) x dx equal to ?

    Text Solution

    |

  11. int(0)^(pi//2) sin^(2) x cos ^(3) x dx

    Text Solution

    |

  12. If int0^ooe^(-ax)dx=1/a, then int0^oo(x^n)e^(-ax)dx is

    Text Solution

    |

  13. If I(m,n)= overset(1)underset(0)int x^(m) (ln x)^(n)dx then I(m,n) i...

    Text Solution

    |

  14. What is the limiting value of the expression ({(n +1) (n+2).....(2n)...

    Text Solution

    |

  15. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  16. The limit, when the tends to infinity, of the series (sqrtn)/( sqrt ...

    Text Solution

    |

  17. The series 1 + 1/2 + 1/3 +…..+ 1/n can be expressed by the definite in...

    Text Solution

    |

  18. lim(n - >oo) {1/(2n+1)+1/( 2n +2) +....... 1/(2n +n)} is equal to

    Text Solution

    |

  19. Evaluate: int(1+2x+3x^2+4x^3+)dx ,(<|x|<1)

    Text Solution

    |

  20. If Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-4))++1/(sqrt(3n^2+2n-1)),n ...

    Text Solution

    |