Home
Class 12
MATHS
If int sqrt2 sqrt (1 + sin x ) dx =- 4 c...

If `int sqrt2 sqrt (1 + sin x ) dx =- 4 cos (ax +b)+C` then the value of (a,b) is :

A

`((1)/(2) , (pi)/(4))`

B

`(1, (pi)/(2))`

C

`(1,1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{2} \sqrt{1 + \sin x} \, dx = -4 \cos(ax + b) + C \) and find the values of \( (a, b) \), we will follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int \sqrt{2} \sqrt{1 + \sin x} \, dx \] We can factor out \( \sqrt{2} \): \[ I = \sqrt{2} \int \sqrt{1 + \sin x} \, dx \] ### Step 2: Rewrite the Expression Next, we rewrite \( 1 + \sin x \) using the identity: \[ 1 + \sin x = \frac{(1 + \sin x)(1 - \sin x)}{1 - \sin x} = \frac{1 - \sin^2 x}{1 - \sin x} = \frac{\cos^2 x}{1 - \sin x} \] Thus, \[ \sqrt{1 + \sin x} = \sqrt{\frac{\cos^2 x}{1 - \sin x}} = \frac{\cos x}{\sqrt{1 - \sin x}} \] So the integral becomes: \[ I = \sqrt{2} \int \frac{\cos x}{\sqrt{1 - \sin x}} \, dx \] ### Step 3: Substitution Let \( t = 1 - \sin x \), then \( dt = -\cos x \, dx \) or \( \cos x \, dx = -dt \). The integral now transforms to: \[ I = -\sqrt{2} \int \frac{1}{\sqrt{t}} \, dt = -\sqrt{2} \cdot 2\sqrt{t} + C = -2\sqrt{2\sqrt{1 - \sin x}} + C \] ### Step 4: Express in Terms of \( \sin \) and \( \cos \) Now we rewrite \( \sqrt{1 - \sin x} \): \[ \sqrt{1 - \sin x} = \sqrt{\cos^2\left(\frac{x}{2}\right)} = \cos\left(\frac{x}{2}\right) \] Thus, \[ I = -2\sqrt{2} \cos\left(\frac{x}{2}\right) + C \] ### Step 5: Compare with Given Expression We need to compare this with the expression: \[ -4 \cos(ax + b) + C \] From our integral, we have: \[ -2\sqrt{2} \cos\left(\frac{x}{2}\right) = -4 \cos(ax + b) \] This implies: \[ \sqrt{2} \cos\left(\frac{x}{2}\right) = 2 \cos(ax + b) \] ### Step 6: Identify \( a \) and \( b \) From the comparison, we can deduce: 1. The coefficient \( a \) must be \( \frac{1}{2} \) since \( \frac{x}{2} \) can be expressed as \( ax \) where \( a = \frac{1}{2} \). 2. The phase shift \( b \) corresponds to \( 0 \) since there is no additional term in the cosine. Thus, we find: \[ (a, b) = \left(\frac{1}{2}, 0\right) \] ### Final Answer The values of \( (a, b) \) are: \[ \left(\frac{1}{2}, 0\right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

If intsqrt(2)sqrt(1+sinx)dx=-4cos(ax+b)+c , then the value of (a,b) is

If int (sin x)/(sin (x-a))dx =Ax +B log sin (x-alpha ) +C, then value of (A,B) is:

If int_(0)^(pi/2) f ( sin2 x ) sin x dx = A int_(0)^(pi/4) f ( cos 2 x ) cos x dx then the value of A is ( sqrt2 = 1.41)

If int (sin x)/(sin (x-alpha))dx =Ax+B log sin (x-alpha)+C , then the value of (A,B) , is

If int _(a )^(b) |sin x |dx =8 and int _(0)^(a+b) |cos x| dx=9 then the value of (1)/(sqrt2pi) |int _(a)^(b) x sin x dx | is:

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx=

If int (sin2x-cos 2x)dx=(1)/(sqrt2) sin(2x-a)+b , then the values of a & b are

DISHA PUBLICATION-INTEGRALS -EXERCISE-2 CONCEPT APPLICATOR
  1. Let the equation of a curve passing through the point (0,1) be given b...

    Text Solution

    |

  2. If intf(x)sinxcosx dx=1/(2(b^2-a^2))logf(x)+C, then f(x) is

    Text Solution

    |

  3. If int sqrt2 sqrt (1 + sin x ) dx =- 4 cos (ax +b)+C then the value of...

    Text Solution

    |

  4. Evaluate: int1/(1+3sin^2x+8cos^2x)\ dx

    Text Solution

    |

  5. I = int {log (e) log (e) x + (1)/( (log (e) x ) ^(2))} dx is equal to:

    Text Solution

    |

  6. int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

    Text Solution

    |

  7. In the integral int(cos 8x+1)/(cot 2x-tan 2x)dx=A cos 8x+k, where k...

    Text Solution

    |

  8. If |x| lt 1" thn "underset(n to oo)"Lt "(1+x)(1+x^(2))(1+x^(4))....(1+...

    Text Solution

    |

  9. int0^1000 e^(x-[x])dx

    Text Solution

    |

  10. Evaluate: ifintf(x)dx=g(x),t h e nintf^(-1)(x)dx

    Text Solution

    |

  11. int(-pi/4) ^(pi/4) (e^theta(thetasintheta))/(e^(2theta)-1)d theta=

    Text Solution

    |

  12. int (x ^(n-1))/( x ^(2n) + a ^(2)) dx =

    Text Solution

    |

  13. If intf(x)cos x dx = 1/2 f^(2)(x)+C, then f(x) can be

    Text Solution

    |

  14. Evaluate: int2^2^x2^2^xdxdot

    Text Solution

    |

  15. The value of int (sqrt ( log 2 )) ^(sqrt( log 3 )) (x sin x ^(2))/( si...

    Text Solution

    |

  16. The value of int((1+x))/(x(1+x e^(x))^(2))dx, is equal to

    Text Solution

    |

  17. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  18. int(log sqrt(pi//2))^(log sqrt(pi))e^(2x)sec^(2)((1)/(3)e^(2x))dx=

    Text Solution

    |

  19. Evaluate : int(6x+7)/(sqrt((x-5)(x-4)))\ dx

    Text Solution

    |

  20. Evaluate: intx/((x-1)(x^2+4))dx

    Text Solution

    |